Answer
Verified
448.5k+ views
Hint:As we know the side of the given square is \[10cm\]. And in a square, all the four sides are equal to each other as well as all the sides interest to its adjacent side at \[{90^0}\]. Therefore, the figure formed by joining the two opposite vertices of a square, is a right-angled triangle with two equal sides.
Complete step-by- step solution:
Given that Side of the square is \[10cm\]
In right angled\[\vartriangle ABC\]
Using Pythagoras theorem
\[A{B^2} + B{C^2} = A{C^2}\] \[\left[ {Bas{e^2} + Perpendicular{r^2} = Hypotenuse{e^2}} \right]\]
As we know, the sides of a square are equal to each other.
$\Rightarrow$ \[AB = BC\]
$\Rightarrow$\[{10^2} + {10^2} = A{C^2}\]
$\Rightarrow$\[100 + 100 = A{C^2}\]
$\Rightarrow$\[200 = A{C^2}\]
$\Rightarrow$\[AC = \sqrt {200} \]
$\Rightarrow$\[AC = \sqrt {2 \times 2 \times 2 \times 5 \times 5} \]
$\Rightarrow$\[AC = 2 \times 5\sqrt 2 \]
$\Rightarrow$\[AC = 10\sqrt 2 \]
Therefore, the diagonal of square will be \[10\sqrt 2 \]
Note: A square can have two diagonals. Each of the diagonal can be formed by joining the diagonally opposite vertices of a square. The properties of diagonals are as follows-
Both the diagonals are congruent (same length). Both the diagonals bisect each other, i.e. the point of joining of the two diagonals is the midpoint of both the diagonals. A diagonal divides a square into two isosceles right-angled triangles. The sum of all the internal angles of a square is equal to \[360 \circ \]and a square is a regular quadrilateral that has four equal sides and four same angles.
The diagonal of a square with side ‘a’ can be calculated using a formula \[a\sqrt 2 \]. Remember, both the diagonals of a square are equal to each other.
Complete step-by- step solution:
Given that Side of the square is \[10cm\]
In right angled\[\vartriangle ABC\]
Using Pythagoras theorem
\[A{B^2} + B{C^2} = A{C^2}\] \[\left[ {Bas{e^2} + Perpendicular{r^2} = Hypotenuse{e^2}} \right]\]
As we know, the sides of a square are equal to each other.
$\Rightarrow$ \[AB = BC\]
$\Rightarrow$\[{10^2} + {10^2} = A{C^2}\]
$\Rightarrow$\[100 + 100 = A{C^2}\]
$\Rightarrow$\[200 = A{C^2}\]
$\Rightarrow$\[AC = \sqrt {200} \]
$\Rightarrow$\[AC = \sqrt {2 \times 2 \times 2 \times 5 \times 5} \]
$\Rightarrow$\[AC = 2 \times 5\sqrt 2 \]
$\Rightarrow$\[AC = 10\sqrt 2 \]
Therefore, the diagonal of square will be \[10\sqrt 2 \]
Note: A square can have two diagonals. Each of the diagonal can be formed by joining the diagonally opposite vertices of a square. The properties of diagonals are as follows-
Both the diagonals are congruent (same length). Both the diagonals bisect each other, i.e. the point of joining of the two diagonals is the midpoint of both the diagonals. A diagonal divides a square into two isosceles right-angled triangles. The sum of all the internal angles of a square is equal to \[360 \circ \]and a square is a regular quadrilateral that has four equal sides and four same angles.
The diagonal of a square with side ‘a’ can be calculated using a formula \[a\sqrt 2 \]. Remember, both the diagonals of a square are equal to each other.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE