
How do you find the derivative with a square root in the denominator $y=5\dfrac{x}{\sqrt{{{x}^{2}}+9}}$?
Answer
544.2k+ views
Hint: We recall the quotient rule of differentiation that is for some differentiable functions $f\left( x \right),g\left( x \right)$ given as $\dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)}$. We take $f\left( x \right)=5x,g\left( x \right)=\sqrt{{{x}^{2}}+9}$ and use quotient rules. We find $\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\sqrt{{{x}^{2}}+9}$ using the chain rule differentiation $\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}$ where we take $u={{x}^{2}}+9$ and $y=\sqrt{{{x}^{2}}+9}$.\[\]
Complete step by step answer:
We know that the process of finding derivative is called differentiation. We know that if we are given two differentiable functions $f\left( x \right),g\left( x \right)$ in their respective domain with the condition on denominator $g\left( x \right)\ne 0$ then we can differentiate the quotient using the following rule as
\[\dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)}\]
If we are asked to differentiate using the composite function $y=g\left( f\left( x \right) \right)$ then we can differentiate using the chain rule as taking $u=g\left( x \right)$
\[\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\]
We are asked to differentiate the derivative of following with a square root in the denominator
\[y=5\dfrac{x}{\sqrt{{{x}^{2}}+9}}=\dfrac{5x}{\sqrt{{{x}^{2}}+9}}\]
We take the numerator function $f\left( x \right)=5x$ and $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ . We first find differentiate $f\left( x \right)=5x$ with respect to $x$ to have;
\[\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}5x=5\dfrac{d}{dx}x=5\cdot 1=5\]
We first find differentiate $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ with respect to $x$ to have;
\[\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\sqrt{{{x}^{2}}+9}\]
We shall use chain rule here taking $u={{x}^{2}}+9$ and $g\left( x \right)=\sqrt{{{x}^{2}}+9}$. We have ;
\[\Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{d\left( {{x}^{2}}+9 \right)}\sqrt{{{x}^{2}}+9}\times \dfrac{d}{dx}\left( {{x}^{2}}+9 \right)\]
We use the standard differentiation of square function $\dfrac{d}{dt}\sqrt{t}=\dfrac{1}{2\sqrt{t}}$ for $t={{x}^{2}}+9$and sum rule of differentiation to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{{{x}^{2}}+9}}\left( \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}9 \right) \\
& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{{{x}^{2}}+9}}\left( 2x \right) \\
& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}+9}} \\
\end{align}\]
Now we use the quotient rule to have;
\[\begin{align}
& \dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{\sqrt{{{x}^{2}}+9}\cdot 5-5x\cdot \dfrac{x}{\sqrt{{{x}^{2}}+9}}}{{{\left( \sqrt{{{x}^{2}}+9} \right)}^{2}}} \\
\end{align}\]
We simplify the terms in numerator and denominator ro have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{\dfrac{\left( {{x}^{2}}+9 \right)\cdot 5-5{{x}^{2}}}{\sqrt{{{x}^{2}}+9}}}{{{x}^{2}}+9} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{5{{x}^{2}}+45-5{{x}^{2}}}{\left( {{x}^{2}}+9 \right)\sqrt{{{x}^{2}}+9}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{45}{{{\left( {{x}^{2}}+9 \right)}^{\dfrac{3}{2}}}} \\
\end{align}\]
Note:
We note that sum rule of differentiation is given by $\dfrac{d}{dx}\left( f+g \right)=\dfrac{d}{dx}f+\dfrac{d}{dx}g$. We note that here $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ satisfies the condition$g\left( x \right)\ne 0$. Since square is always non-negative we have ${{x}^{2}}\ge 0\Rightarrow {{x}^{2}}+9\ge 9\Rightarrow \sqrt{{{x}^{2}}+9}\ge 3$. So we have always$g\left( x \right)=\sqrt{{{x}^{2}}+9}>0$. Hence the required condition is satisfied. We note that domain of $f\left( x \right)=5x$ is real number set and the domain of $\sqrt{{{x}^{2}}+9}$ is the set $\left[ -3,\infty \right)$ and both $f,g$ are differentiable everywhere in their respective domains. The domain of $\dfrac{f\left( x \right)}{g\left( x \right)}$ is $\left( -3,\infty \right)$.
Complete step by step answer:
We know that the process of finding derivative is called differentiation. We know that if we are given two differentiable functions $f\left( x \right),g\left( x \right)$ in their respective domain with the condition on denominator $g\left( x \right)\ne 0$ then we can differentiate the quotient using the following rule as
\[\dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)}\]
If we are asked to differentiate using the composite function $y=g\left( f\left( x \right) \right)$ then we can differentiate using the chain rule as taking $u=g\left( x \right)$
\[\dfrac{dy}{dx}=\dfrac{dy}{du}\times \dfrac{du}{dx}\]
We are asked to differentiate the derivative of following with a square root in the denominator
\[y=5\dfrac{x}{\sqrt{{{x}^{2}}+9}}=\dfrac{5x}{\sqrt{{{x}^{2}}+9}}\]
We take the numerator function $f\left( x \right)=5x$ and $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ . We first find differentiate $f\left( x \right)=5x$ with respect to $x$ to have;
\[\dfrac{d}{dx}f\left( x \right)=\dfrac{d}{dx}5x=5\dfrac{d}{dx}x=5\cdot 1=5\]
We first find differentiate $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ with respect to $x$ to have;
\[\dfrac{d}{dx}g\left( x \right)=\dfrac{d}{dx}\sqrt{{{x}^{2}}+9}\]
We shall use chain rule here taking $u={{x}^{2}}+9$ and $g\left( x \right)=\sqrt{{{x}^{2}}+9}$. We have ;
\[\Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{d}{d\left( {{x}^{2}}+9 \right)}\sqrt{{{x}^{2}}+9}\times \dfrac{d}{dx}\left( {{x}^{2}}+9 \right)\]
We use the standard differentiation of square function $\dfrac{d}{dt}\sqrt{t}=\dfrac{1}{2\sqrt{t}}$ for $t={{x}^{2}}+9$and sum rule of differentiation to have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{{{x}^{2}}+9}}\left( \dfrac{d}{dx}{{x}^{2}}+\dfrac{d}{dx}9 \right) \\
& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{1}{2\sqrt{{{x}^{2}}+9}}\left( 2x \right) \\
& \Rightarrow \dfrac{d}{dx}g\left( x \right)=\dfrac{x}{\sqrt{{{x}^{2}}+9}} \\
\end{align}\]
Now we use the quotient rule to have;
\[\begin{align}
& \dfrac{d}{dx}\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\dfrac{g\left( x \right)\dfrac{d}{dx}f\left( x \right)-f\left( x \right)\dfrac{d}{dx}g\left( x \right)}{{{g}^{2}}\left( x \right)} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{\sqrt{{{x}^{2}}+9}\cdot 5-5x\cdot \dfrac{x}{\sqrt{{{x}^{2}}+9}}}{{{\left( \sqrt{{{x}^{2}}+9} \right)}^{2}}} \\
\end{align}\]
We simplify the terms in numerator and denominator ro have;
\[\begin{align}
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{\dfrac{\left( {{x}^{2}}+9 \right)\cdot 5-5{{x}^{2}}}{\sqrt{{{x}^{2}}+9}}}{{{x}^{2}}+9} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{5{{x}^{2}}+45-5{{x}^{2}}}{\left( {{x}^{2}}+9 \right)\sqrt{{{x}^{2}}+9}} \\
& \Rightarrow \dfrac{d}{dx}\left( \dfrac{5x}{\sqrt{{{x}^{2}}+9}} \right)=\dfrac{45}{{{\left( {{x}^{2}}+9 \right)}^{\dfrac{3}{2}}}} \\
\end{align}\]
Note:
We note that sum rule of differentiation is given by $\dfrac{d}{dx}\left( f+g \right)=\dfrac{d}{dx}f+\dfrac{d}{dx}g$. We note that here $g\left( x \right)=\sqrt{{{x}^{2}}+9}$ satisfies the condition$g\left( x \right)\ne 0$. Since square is always non-negative we have ${{x}^{2}}\ge 0\Rightarrow {{x}^{2}}+9\ge 9\Rightarrow \sqrt{{{x}^{2}}+9}\ge 3$. So we have always$g\left( x \right)=\sqrt{{{x}^{2}}+9}>0$. Hence the required condition is satisfied. We note that domain of $f\left( x \right)=5x$ is real number set and the domain of $\sqrt{{{x}^{2}}+9}$ is the set $\left[ -3,\infty \right)$ and both $f,g$ are differentiable everywhere in their respective domains. The domain of $\dfrac{f\left( x \right)}{g\left( x \right)}$ is $\left( -3,\infty \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

