
How do you find the derivative of \[y=\sqrt{x-3}\] using the limit definition?
Answer
554.7k+ views
Hint: In this problem, we have to find the derivative of the given expression using the limit definition. We should know the Limit definition to solve this problem. We have to substitute the given function in the limit definition formula to get the derivative of the given function.
Complete step by step answer:
We know that the given function to which we have to find the derivative is,
\[f\left( x \right)=y=\sqrt{x-3}\]…… (1)
We can write the above function as,
\[f\left( x+h \right)=y=\sqrt{x+h-3}\]….. (2)
We know that the limit definition is,
\[f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\] …… (3)
Now we can substitute the functions (1) and (2) in the limit definition (3), we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sqrt{x+h-3}-\sqrt{x-3}}{h}\]
Now we can multiply the numerator and denominator with conjugate of numerator \[\dfrac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}}\], in order to cancel the radicals, we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sqrt{x+h-3}-\sqrt{x-3}}{h}\times \dfrac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}}\]
Now we can cancel the radical in the numerator, by the property \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]and we can multiply the denominator, we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{{{\left( \sqrt{x+h-3} \right)}^{2}}-{{\left( \sqrt{x-3} \right)}^{2}}}{h\left( \sqrt{x+h-3}+\sqrt{x-3} \right)} \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\left( x+h-3 \right)-\left( x-3 \right)}{h\left( \sqrt{x+h-3}+\sqrt{x-3} \right)} \\
\end{align}\]
Now we can simplify the numerator in the above step, we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{h}{h\left( \sqrt{x+h-3}+\sqrt{x-3} \right)}\]
We can cancel the similar terms in the numerator and the denominator, we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{1}{\left( \sqrt{x+h-3}+\sqrt{x-3} \right)}\]
Now, we can apply the given limit value, we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=\dfrac{1}{\left( \sqrt{x+0-3}+\sqrt{x-3} \right)} \\
& \Rightarrow f'\left( x \right)=\dfrac{1}{\left( \sqrt{x-3}+\sqrt{x-3} \right)} \\
\end{align}\]
We can now add the denominator, we get
\[\Rightarrow f'\left( x \right)=\dfrac{1}{\left( 2\sqrt{x-3} \right)}\]
Therefore, the answer is \[f'\left( x \right)=\dfrac{1}{\left( 2\sqrt{x-3} \right)}\].
Note:
Students make mistakes while simplifying the steps, we have more simplification in these types of problems. To solve these types of problems, we have to know the limit definition formula, in which we can apply the given function directly to find the derivative.
Complete step by step answer:
We know that the given function to which we have to find the derivative is,
\[f\left( x \right)=y=\sqrt{x-3}\]…… (1)
We can write the above function as,
\[f\left( x+h \right)=y=\sqrt{x+h-3}\]….. (2)
We know that the limit definition is,
\[f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\] …… (3)
Now we can substitute the functions (1) and (2) in the limit definition (3), we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sqrt{x+h-3}-\sqrt{x-3}}{h}\]
Now we can multiply the numerator and denominator with conjugate of numerator \[\dfrac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}}\], in order to cancel the radicals, we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\sqrt{x+h-3}-\sqrt{x-3}}{h}\times \dfrac{\sqrt{x+h-3}+\sqrt{x-3}}{\sqrt{x+h-3}+\sqrt{x-3}}\]
Now we can cancel the radical in the numerator, by the property \[\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\]and we can multiply the denominator, we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{{{\left( \sqrt{x+h-3} \right)}^{2}}-{{\left( \sqrt{x-3} \right)}^{2}}}{h\left( \sqrt{x+h-3}+\sqrt{x-3} \right)} \\
& \Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{\left( x+h-3 \right)-\left( x-3 \right)}{h\left( \sqrt{x+h-3}+\sqrt{x-3} \right)} \\
\end{align}\]
Now we can simplify the numerator in the above step, we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{h}{h\left( \sqrt{x+h-3}+\sqrt{x-3} \right)}\]
We can cancel the similar terms in the numerator and the denominator, we get
\[\Rightarrow f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{1}{\left( \sqrt{x+h-3}+\sqrt{x-3} \right)}\]
Now, we can apply the given limit value, we get
\[\begin{align}
& \Rightarrow f'\left( x \right)=\dfrac{1}{\left( \sqrt{x+0-3}+\sqrt{x-3} \right)} \\
& \Rightarrow f'\left( x \right)=\dfrac{1}{\left( \sqrt{x-3}+\sqrt{x-3} \right)} \\
\end{align}\]
We can now add the denominator, we get
\[\Rightarrow f'\left( x \right)=\dfrac{1}{\left( 2\sqrt{x-3} \right)}\]
Therefore, the answer is \[f'\left( x \right)=\dfrac{1}{\left( 2\sqrt{x-3} \right)}\].
Note:
Students make mistakes while simplifying the steps, we have more simplification in these types of problems. To solve these types of problems, we have to know the limit definition formula, in which we can apply the given function directly to find the derivative.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

