
How do you find the derivative of \[y = \operatorname{arccot} \left( x \right)\] ?
Answer
558.6k+ views
Hint:$\dfrac{d}{{dx}}\left[ {\operatorname{arccot} \left( x \right)} \right] = - \dfrac{1}{{1 + {x^2}}}$
Notice if \[y = \operatorname{arccot} \left( x \right)\] then,
$\sin (y) = \dfrac{1}{{\sqrt {1 + {x^2}} }}$
Using Pythagoras Theorem
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2}$
we get, $\cos (y) = \dfrac{x}{{\sqrt {1 + {x^2}} }}$
Complete step by step answer-
Given that \[y = \operatorname{arccot} \left( x \right)\], then it follows
$\cot (y) = x$ and $0 < y < \pi $
Differentiating both sides with respect to x we get
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\cot \left( y \right)} \right] = \dfrac{d}{{dx}}\left[ x \right]$
$ \Rightarrow - \cos e{c^2}\left( y \right).\dfrac{{dy}}{{dx}} = 1$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{\cos e{c^2}\left( y \right)}} = - {\sin ^2}\left( y \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - {\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)^2} = - \dfrac{1}{{1 + {x^2}}}$
Therefore, we get $\dfrac{d}{{dx}}\left[ {\operatorname{arccot} \left( x \right)} \right] = - \dfrac{1}{{1 + {x^2}}}$
Note- It is advised to the students to learn the value of the derivative of \[y = \operatorname{arccot} \left( x \right)\] as it will be useful in the future.
Notice if \[y = \operatorname{arccot} \left( x \right)\] then,
$\sin (y) = \dfrac{1}{{\sqrt {1 + {x^2}} }}$
Using Pythagoras Theorem
${\left( {hypotenuse} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2}$
we get, $\cos (y) = \dfrac{x}{{\sqrt {1 + {x^2}} }}$
Complete step by step answer-
Given that \[y = \operatorname{arccot} \left( x \right)\], then it follows
$\cot (y) = x$ and $0 < y < \pi $
Differentiating both sides with respect to x we get
$ \Rightarrow \dfrac{d}{{dx}}\left[ {\cot \left( y \right)} \right] = \dfrac{d}{{dx}}\left[ x \right]$
$ \Rightarrow - \cos e{c^2}\left( y \right).\dfrac{{dy}}{{dx}} = 1$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{{\cos e{c^2}\left( y \right)}} = - {\sin ^2}\left( y \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - {\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)^2} = - \dfrac{1}{{1 + {x^2}}}$
Therefore, we get $\dfrac{d}{{dx}}\left[ {\operatorname{arccot} \left( x \right)} \right] = - \dfrac{1}{{1 + {x^2}}}$
Note- It is advised to the students to learn the value of the derivative of \[y = \operatorname{arccot} \left( x \right)\] as it will be useful in the future.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

