
How can I find the derivative of $y = {e^x}$ from first principles?
Answer
547.2k+ views
Hint: We need to plug this function into the definition of the derivative, (1), and do some algebra. First plug the function into the definition of the derivative. Next, make factors of numerator by taking common terms out. Next, take ${e^x}$ out of the limit and use the property of exponential function in limits to find the desired result.
Formula used: Definition of the Derivative from First Principles:
The derivative of $f\left( x \right)$ with respect to $x$ is the function $f'\left( x \right)$ and is defined as,
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$...........…(1)
Complete step-by-step solution:
First plug the function into the definition of the derivative.
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{x + h}} - {e^x}}}{h}$
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^x} \cdot {e^h} - {e^x}}}{h}$
Take ${e^x}$ common in the numerator, we get
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^x}\left( {{e^h} - 1} \right)}}{h}$
Now, the ${e^x}$ is not affected by the limit since it doesn’t have any $h$’s in it and so is a constant as far as the limit is concerned. We can therefore factor this out of the limit. This gives,
\[ \Rightarrow y'\left( x \right) = {e^x}\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^h} - 1}}{h}\]
We know that $e$ is the unique positive number for which \[\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^h} - 1}}{h} = 1\].
So, \[y'\left( x \right) = {e^x} \times 1\]
Multiply ${e^x}$ with $1$, we get
\[y'\left( x \right) = {e^x}\]
Therefore, the derivative of $y = {e^x}$ is, \[y'\left( x \right) = {e^x}\].
Additional Information: Here, notice that the limit we’ve got, \[y'\left( x \right) = {e^x}\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^h} - 1}}{h}\] is exactly the definition of the derivative of $f\left( x \right) = {e^x}$ at $x = 0$ , i.e., $f'\left( 0 \right)$. Therefore, the derivative becomes,
$f'\left( x \right) = f'\left( 0 \right){e^x}$
Note: We can also use the power series of exponential function to find the derivative of $y = {e^x}$.
Power Series of Exponential function:
${e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ...$
Now, differentiate it with respect to $x$.
$\dfrac{d}{{dx}}\left( {{e^x}} \right) = \dfrac{d}{{dx}}\left( {1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ...} \right)$
Now, use property $\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{2!}}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^3}}}{{3!}}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^4}}}{{4!}}} \right) + ...$
Now, use property $\dfrac{d}{{dx}}\left[ {kf\left( x \right)} \right] = k\dfrac{d}{{dx}}f\left( x \right)$.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( x \right) + \dfrac{1}{{2!}}\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{1}{{3!}}\dfrac{d}{{dx}}\left( {{x^3}} \right) + \dfrac{1}{{4!}}\dfrac{d}{{dx}}\left( {{x^4}} \right) + ...$
Now, use property $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = 0 + 1 + \dfrac{1}{2} \times 2x + \dfrac{1}{{3 \times 2!}} \times 3{x^2} + \dfrac{1}{{4 \times 3!}} \times 4{x^3} + ...$
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ...$
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Therefore, the derivative of $y = {e^x}$ is, \[y'\left( x \right) = {e^x}\].
Formula used: Definition of the Derivative from First Principles:
The derivative of $f\left( x \right)$ with respect to $x$ is the function $f'\left( x \right)$ and is defined as,
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$...........…(1)
Complete step-by-step solution:
First plug the function into the definition of the derivative.
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^{x + h}} - {e^x}}}{h}$
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^x} \cdot {e^h} - {e^x}}}{h}$
Take ${e^x}$ common in the numerator, we get
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{e^x}\left( {{e^h} - 1} \right)}}{h}$
Now, the ${e^x}$ is not affected by the limit since it doesn’t have any $h$’s in it and so is a constant as far as the limit is concerned. We can therefore factor this out of the limit. This gives,
\[ \Rightarrow y'\left( x \right) = {e^x}\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^h} - 1}}{h}\]
We know that $e$ is the unique positive number for which \[\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^h} - 1}}{h} = 1\].
So, \[y'\left( x \right) = {e^x} \times 1\]
Multiply ${e^x}$ with $1$, we get
\[y'\left( x \right) = {e^x}\]
Therefore, the derivative of $y = {e^x}$ is, \[y'\left( x \right) = {e^x}\].
Additional Information: Here, notice that the limit we’ve got, \[y'\left( x \right) = {e^x}\mathop {\lim }\limits_{h \to 0} \dfrac{{{e^h} - 1}}{h}\] is exactly the definition of the derivative of $f\left( x \right) = {e^x}$ at $x = 0$ , i.e., $f'\left( 0 \right)$. Therefore, the derivative becomes,
$f'\left( x \right) = f'\left( 0 \right){e^x}$
Note: We can also use the power series of exponential function to find the derivative of $y = {e^x}$.
Power Series of Exponential function:
${e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ...$
Now, differentiate it with respect to $x$.
$\dfrac{d}{{dx}}\left( {{e^x}} \right) = \dfrac{d}{{dx}}\left( {1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ...} \right)$
Now, use property $\dfrac{d}{{dx}}\left[ {f\left( x \right) \pm g\left( x \right)} \right] = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^2}}}{{2!}}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^3}}}{{3!}}} \right) + \dfrac{d}{{dx}}\left( {\dfrac{{{x^4}}}{{4!}}} \right) + ...$
Now, use property $\dfrac{d}{{dx}}\left[ {kf\left( x \right)} \right] = k\dfrac{d}{{dx}}f\left( x \right)$.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = \dfrac{d}{{dx}}\left( 1 \right) + \dfrac{d}{{dx}}\left( x \right) + \dfrac{1}{{2!}}\dfrac{d}{{dx}}\left( {{x^2}} \right) + \dfrac{1}{{3!}}\dfrac{d}{{dx}}\left( {{x^3}} \right) + \dfrac{1}{{4!}}\dfrac{d}{{dx}}\left( {{x^4}} \right) + ...$
Now, use property $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = 0 + 1 + \dfrac{1}{2} \times 2x + \dfrac{1}{{3 \times 2!}} \times 3{x^2} + \dfrac{1}{{4 \times 3!}} \times 4{x^3} + ...$
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + \dfrac{{{x^4}}}{{4!}} + ...$
$ \Rightarrow \dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$
Therefore, the derivative of $y = {e^x}$ is, \[y'\left( x \right) = {e^x}\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

