
How do you find the derivative of $y = \dfrac{4}{{\cos x}}$?
Answer
547.5k+ views
Hint: We have to find $y'$. For this differentiate $y$ with respect to $x$. Then, use the property that the differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function. Then, use trigonometry identity $\cos \theta \times \sec \theta = 1$ to replace $\dfrac{1}{{\cos x}}$ with $\sec x$. Then, use the property that the differentiation of secant function is a product of secant and tangent function and get the desired result.
Formula used: The differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
The differentiation of secant function is a product of secant and tangent function.
i.e., $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
Trigonometric identity: $\cos \theta \times \sec \theta = 1$
Complete step-by-step solution:
We have to find the derivative of $y = \dfrac{4}{{\cos x}}$.............…(i)
So, differentiate $y$ with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{4}{{\cos x}}} \right)$...........…(ii)
Now, using the property that the differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
So, in above differentiation (ii), constant $4$ can be taken outside the differentiation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\dfrac{1}{{\cos x}}} \right)$...........…(iii)
Now, use trigonometry identity $\cos \theta \times \sec \theta = 1$ to replace $\dfrac{1}{{\cos x}}$ with $\sec x$.
So, differentiation (iii) can be written as
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\sec x} \right)$............…(iv)
Now, using the property that the differentiation of secant function is a product of secant and tangent function.
i.e., $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
So, in above differentiation (iv), we can use above property and find the derivative of $y$.$ \Rightarrow \dfrac{{dy}}{{dx}} = 4\sec \left( x \right)\tan \left( x \right)$
Therefore, the derivative is $y' = 4\sec \left( x \right)\tan \left( x \right)$.
Note: We can also find the derivative using the limit definition of derivative.
Definition of the Derivative:
The derivative of $f\left( x \right)$ with respect to $x$ is the function $f'\left( x \right)$ and is defined as,
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$..........…(1)
So, all we really need to do is to plug this function into the definition of the derivative, (1), and do some algebra.
First plug the function into the definition of the derivative.
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{4}{{\cos \left( {x + h} \right)}} - \dfrac{4}{{\cos \left( x \right)}}}}{h}$
Now, we know that we can’t just plug in $h = 0$ since this will give us a division by zero error. So, we are going to have to do some work.
$ \Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos \left( x \right)}}}}{h}$
$ \Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( x \right) - \cos \left( {x + h} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}}$
As $\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right)$.
$ \Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}}$
$ \Rightarrow y'\left( x \right) = 4\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{{2x + h}}{2}} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}} \times \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {h/2} \right)}}{{h/2}}} \right]$
As $\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {h/2} \right)}}{{h/2}} = 1$.
$ \Rightarrow y'\left( x \right) = 4 \times \dfrac{{\sin \left( x \right)}}{{\cos \left( x \right)\sin \left( x \right)}} \times 1$
$ \Rightarrow y'\left( x \right) = 4\sec \left( x \right)\tan \left( x \right)$
Therefore, the derivative is $y' = 4\sec \left( x \right)\tan \left( x \right)$.
Formula used: The differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
The differentiation of secant function is a product of secant and tangent function.
i.e., $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
Trigonometric identity: $\cos \theta \times \sec \theta = 1$
Complete step-by-step solution:
We have to find the derivative of $y = \dfrac{4}{{\cos x}}$.............…(i)
So, differentiate $y$ with respect to $x$.
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{4}{{\cos x}}} \right)$...........…(ii)
Now, using the property that the differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
So, in above differentiation (ii), constant $4$ can be taken outside the differentiation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\dfrac{1}{{\cos x}}} \right)$...........…(iii)
Now, use trigonometry identity $\cos \theta \times \sec \theta = 1$ to replace $\dfrac{1}{{\cos x}}$ with $\sec x$.
So, differentiation (iii) can be written as
$ \Rightarrow \dfrac{{dy}}{{dx}} = 4\dfrac{d}{{dx}}\left( {\sec x} \right)$............…(iv)
Now, using the property that the differentiation of secant function is a product of secant and tangent function.
i.e., $\dfrac{d}{{dx}}\left( {\sec x} \right) = \sec x\tan x$
So, in above differentiation (iv), we can use above property and find the derivative of $y$.$ \Rightarrow \dfrac{{dy}}{{dx}} = 4\sec \left( x \right)\tan \left( x \right)$
Therefore, the derivative is $y' = 4\sec \left( x \right)\tan \left( x \right)$.
Note: We can also find the derivative using the limit definition of derivative.
Definition of the Derivative:
The derivative of $f\left( x \right)$ with respect to $x$ is the function $f'\left( x \right)$ and is defined as,
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$..........…(1)
So, all we really need to do is to plug this function into the definition of the derivative, (1), and do some algebra.
First plug the function into the definition of the derivative.
$f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$
$ \Rightarrow y'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{4}{{\cos \left( {x + h} \right)}} - \dfrac{4}{{\cos \left( x \right)}}}}{h}$
Now, we know that we can’t just plug in $h = 0$ since this will give us a division by zero error. So, we are going to have to do some work.
$ \Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{\cos \left( {x + h} \right)}} - \dfrac{1}{{\cos \left( x \right)}}}}{h}$
$ \Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{\cos \left( x \right) - \cos \left( {x + h} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}}$
As $\cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right)$.
$ \Rightarrow y'\left( x \right) = 4\mathop {\lim }\limits_{h \to 0} \dfrac{{2\sin \left( {\dfrac{{2x + h}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}}$
$ \Rightarrow y'\left( x \right) = 4\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{{2x + h}}{2}} \right)}}{{h\cos \left( x \right)\cos \left( {x + h} \right)}} \times \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {h/2} \right)}}{{h/2}}} \right]$
As $\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {h/2} \right)}}{{h/2}} = 1$.
$ \Rightarrow y'\left( x \right) = 4 \times \dfrac{{\sin \left( x \right)}}{{\cos \left( x \right)\sin \left( x \right)}} \times 1$
$ \Rightarrow y'\left( x \right) = 4\sec \left( x \right)\tan \left( x \right)$
Therefore, the derivative is $y' = 4\sec \left( x \right)\tan \left( x \right)$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

