
How to find the derivative of \[{{x}^{3}}\arctan \left( 7x \right)\]?
Answer
550.2k+ views
Hint: To find the derivative first apply the product rule in the given function \[{{x}^{3}}\arctan \left( 7x \right)\]and the formula of product rule is: \[{{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right)\] where \[u\left( x \right)={{x}^{3}}\]and \[v\left( x \right)=\arctan \left( 7x \right)\]. Secondly, to further differentiate \[{{x}^{3}}\]apply differentiation rule that is \[{u}'\left( x \right)=n{{x}^{n-1}}\] where according to the question \[n\] is equal to \[3\] & \[u\left( x \right)={{x}^{3}}\]and to differentiate \[\arctan \left( 7x \right)\] apply differentiation rule: \[{{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right)\] here \[v\left( x \right)=7x\]. Then if possible, simplify the solution.
Complete step by step solution:
The derivative of \[{{x}^{3}}\arctan \left( 7x \right)\] is as follows:
\[\dfrac{d}{dx}\left[ {{x}^{3}}\arctan \left( 7x \right) \right]\]
Applying product rule: \[{{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right)\] in the given function we get:
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{3}} \right]\cdot \arctan \left( 7x \right)+{{x}^{3}}\cdot \dfrac{d}{dx}\left[ \arctan \left( 7x \right) \right]...(i)\]
Now to further differentiate \[{{x}^{3}}\]apply differentiation rule that is \[{u}'\left( x \right)=n{{x}^{n-1}}\] where according to the question \[n\] is equal to \[3\] & \[u(x)={{x}^{3}}\]that is
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{3}} \right]=3{{x}^{2}}...(ii)\]
and to differentiate \[\arctan (7x)\] apply differentiation rule: \[{{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right)\] where \[v\left( x \right)=7x\] that is
\[\Rightarrow \dfrac{d}{dx}\left[ \arctan \left( 7x \right) \right]=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \dfrac{d}{dx}\left[ 7x \right]...(iii)\]
Now putting the values of equation \[(ii)\]and \[(iii)\] in equation \[(i)\] we get:
\[\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+{{x}^{3}}\cdot \dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \dfrac{d}{dx}\left[ 7x \right]...(iv)\]
According to the differentiation rule that is \[{u}'\left( x \right)=n{{x}^{n-1}}\] we know that derivative of \[7x\] is
\[\Rightarrow \dfrac{d}{dx}\left[ 7x \right]=7...(v)\]
Now putting the value of equation \[(v)\] in equation \[(iv)\] and multiplying the terms we get:
\[\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{{{x}^{3}}\cdot 7\cdot 1}{{{\left( 7x \right)}^{2}}+1}\]
We know that \[{{7}^{2}}\] is equal to \[49\]. So, we can write the above equation in simpler form that is
\[\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{7{{x}^{3}}}{49{{x}^{2}}+1}\]
\[\therefore \] Derivative of \[{{x}^{3}}\arctan \left( 7x \right)\] is \[3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{7{{x}^{3}}}{49{{x}^{2}}+1}\].
Note: Students can go wrong by not applying differentiation rule in the function \[\arctan \left( 7x \right)\] correctly that is they write \[{{\left[ \arctan \left( 7x \right) \right]}^{\prime }}=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\] and forget to multiply with the derivative of \[\left( 7x \right)\] which further leads to the wrong answer whereas correct way to write is \[{{\left[ \arctan \left( 7x \right) \right]}^{\prime }}=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \left( 7x \right)\]. So, the key point is to know both differentiation rule: \[{u}'\left( x \right)=n{{x}^{n-1}}\], \[{{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right)\] and the product rule: \[{{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right)\] right. And avoid multiplication, addition errors.
Complete step by step solution:
The derivative of \[{{x}^{3}}\arctan \left( 7x \right)\] is as follows:
\[\dfrac{d}{dx}\left[ {{x}^{3}}\arctan \left( 7x \right) \right]\]
Applying product rule: \[{{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right)\] in the given function we get:
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{3}} \right]\cdot \arctan \left( 7x \right)+{{x}^{3}}\cdot \dfrac{d}{dx}\left[ \arctan \left( 7x \right) \right]...(i)\]
Now to further differentiate \[{{x}^{3}}\]apply differentiation rule that is \[{u}'\left( x \right)=n{{x}^{n-1}}\] where according to the question \[n\] is equal to \[3\] & \[u(x)={{x}^{3}}\]that is
\[\Rightarrow \dfrac{d}{dx}\left[ {{x}^{3}} \right]=3{{x}^{2}}...(ii)\]
and to differentiate \[\arctan (7x)\] apply differentiation rule: \[{{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right)\] where \[v\left( x \right)=7x\] that is
\[\Rightarrow \dfrac{d}{dx}\left[ \arctan \left( 7x \right) \right]=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \dfrac{d}{dx}\left[ 7x \right]...(iii)\]
Now putting the values of equation \[(ii)\]and \[(iii)\] in equation \[(i)\] we get:
\[\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+{{x}^{3}}\cdot \dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \dfrac{d}{dx}\left[ 7x \right]...(iv)\]
According to the differentiation rule that is \[{u}'\left( x \right)=n{{x}^{n-1}}\] we know that derivative of \[7x\] is
\[\Rightarrow \dfrac{d}{dx}\left[ 7x \right]=7...(v)\]
Now putting the value of equation \[(v)\] in equation \[(iv)\] and multiplying the terms we get:
\[\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{{{x}^{3}}\cdot 7\cdot 1}{{{\left( 7x \right)}^{2}}+1}\]
We know that \[{{7}^{2}}\] is equal to \[49\]. So, we can write the above equation in simpler form that is
\[\Rightarrow 3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{7{{x}^{3}}}{49{{x}^{2}}+1}\]
\[\therefore \] Derivative of \[{{x}^{3}}\arctan \left( 7x \right)\] is \[3{{x}^{2}}\cdot \arctan \left( 7x \right)+\dfrac{7{{x}^{3}}}{49{{x}^{2}}+1}\].
Note: Students can go wrong by not applying differentiation rule in the function \[\arctan \left( 7x \right)\] correctly that is they write \[{{\left[ \arctan \left( 7x \right) \right]}^{\prime }}=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\] and forget to multiply with the derivative of \[\left( 7x \right)\] which further leads to the wrong answer whereas correct way to write is \[{{\left[ \arctan \left( 7x \right) \right]}^{\prime }}=\dfrac{1}{{{\left( 7x \right)}^{2}}+1}\cdot \left( 7x \right)\]. So, the key point is to know both differentiation rule: \[{u}'\left( x \right)=n{{x}^{n-1}}\], \[{{\left[ \arctan \left( v\left( x \right) \right) \right]}^{\prime }}=\dfrac{1}{v{{\left( x \right)}^{2}}+1}\cdot {v}'\left( x \right)\] and the product rule: \[{{\left[ u\left( x \right).v\left( x \right) \right]}^{\prime }}=u\left( x \right).{v}'\left( x \right)+v\left( x \right).{u}'\left( x \right)\] right. And avoid multiplication, addition errors.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

