
How do you find the derivative of the function $y={{e}^{x}}.\ln x$?
Answer
562.2k+ views
Hint: We start solving the problem by applying the differentiation on both sides of the given equation with respect to x. We then make use of the uv rule of differentiation $\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ to proceed through the problem. We then make use of the results $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ to proceed further through the problem. We then make the necessary calculations to get the required derivative of the given function.
Complete step by step answer:
According to the problem, we are asked to find the derivative of the given function $y={{e}^{x}}.\ln x$.
We have given the function $y={{e}^{x}}.\ln x$ ---(1).
Let us differentiate both sides of equation (1) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( {{e}^{x}}.\ln x \right)$ ---(2).
From uv rule of differentiation, we know that $\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. Let us use this result in equation (2).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{x}} \right)}{dx}$ ---(3).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{1}{x}+\ln x.{{e}^{x}}$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1}{x}+\ln x \right)$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1+x\ln x}{x} \right)$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
So, we have found the derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
$\therefore $ The derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have given the function $y={{e}^{x}}.\ln x$.
$\Rightarrow y=\dfrac{\ln x}{{{e}^{-x}}}$ ---(4).
Let us differentiate both sides of equation (4) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( \dfrac{\ln x}{{{e}^{-x}}} \right)$ ---(5).
From $\dfrac{u}{v}$ rule of differentiation, we know that $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. Let us use this result in equation (5).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{-x}} \right)}{dx}}{{{\left( {{e}^{-x}} \right)}^{2}}}$ ---(6).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{-x}} \right)}{dx}=-{{e}^{-x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}-\ln x.\left( -{{e}^{-x}} \right)}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}+{{e}^{-x}}\ln x}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}\left( \dfrac{1}{x}+\ln x \right)}{{{e}^{-2x}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Complete step by step answer:
According to the problem, we are asked to find the derivative of the given function $y={{e}^{x}}.\ln x$.
We have given the function $y={{e}^{x}}.\ln x$ ---(1).
Let us differentiate both sides of equation (1) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( {{e}^{x}}.\ln x \right)$ ---(2).
From uv rule of differentiation, we know that $\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. Let us use this result in equation (2).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{x}} \right)}{dx}$ ---(3).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{1}{x}+\ln x.{{e}^{x}}$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1}{x}+\ln x \right)$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1+x\ln x}{x} \right)$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
So, we have found the derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
$\therefore $ The derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have given the function $y={{e}^{x}}.\ln x$.
$\Rightarrow y=\dfrac{\ln x}{{{e}^{-x}}}$ ---(4).
Let us differentiate both sides of equation (4) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( \dfrac{\ln x}{{{e}^{-x}}} \right)$ ---(5).
From $\dfrac{u}{v}$ rule of differentiation, we know that $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. Let us use this result in equation (5).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{-x}} \right)}{dx}}{{{\left( {{e}^{-x}} \right)}^{2}}}$ ---(6).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{-x}} \right)}{dx}=-{{e}^{-x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}-\ln x.\left( -{{e}^{-x}} \right)}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}+{{e}^{-x}}\ln x}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}\left( \dfrac{1}{x}+\ln x \right)}{{{e}^{-2x}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

