
How do you find the derivative of the function $y={{e}^{x}}.\ln x$?
Answer
467.1k+ views
Hint: We start solving the problem by applying the differentiation on both sides of the given equation with respect to x. We then make use of the uv rule of differentiation $\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ to proceed through the problem. We then make use of the results $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$ to proceed further through the problem. We then make the necessary calculations to get the required derivative of the given function.
Complete step by step answer:
According to the problem, we are asked to find the derivative of the given function $y={{e}^{x}}.\ln x$.
We have given the function $y={{e}^{x}}.\ln x$ ---(1).
Let us differentiate both sides of equation (1) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( {{e}^{x}}.\ln x \right)$ ---(2).
From uv rule of differentiation, we know that $\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. Let us use this result in equation (2).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{x}} \right)}{dx}$ ---(3).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{1}{x}+\ln x.{{e}^{x}}$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1}{x}+\ln x \right)$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1+x\ln x}{x} \right)$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
So, we have found the derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
$\therefore $ The derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have given the function $y={{e}^{x}}.\ln x$.
$\Rightarrow y=\dfrac{\ln x}{{{e}^{-x}}}$ ---(4).
Let us differentiate both sides of equation (4) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( \dfrac{\ln x}{{{e}^{-x}}} \right)$ ---(5).
From $\dfrac{u}{v}$ rule of differentiation, we know that $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. Let us use this result in equation (5).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{-x}} \right)}{dx}}{{{\left( {{e}^{-x}} \right)}^{2}}}$ ---(6).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{-x}} \right)}{dx}=-{{e}^{-x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}-\ln x.\left( -{{e}^{-x}} \right)}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}+{{e}^{-x}}\ln x}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}\left( \dfrac{1}{x}+\ln x \right)}{{{e}^{-2x}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Complete step by step answer:
According to the problem, we are asked to find the derivative of the given function $y={{e}^{x}}.\ln x$.
We have given the function $y={{e}^{x}}.\ln x$ ---(1).
Let us differentiate both sides of equation (1) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( {{e}^{x}}.\ln x \right)$ ---(2).
From uv rule of differentiation, we know that $\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$. Let us use this result in equation (2).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{x}} \right)}{dx}$ ---(3).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{x}} \right)}{dx}={{e}^{x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}.\dfrac{1}{x}+\ln x.{{e}^{x}}$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1}{x}+\ln x \right)$.
$\Rightarrow \dfrac{dy}{dx}={{e}^{x}}\left( \dfrac{1+x\ln x}{x} \right)$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
So, we have found the derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
$\therefore $ The derivative of the given function $y={{e}^{x}}.\ln x$ as $\dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Note: We should perform each step carefully to avoid confusion and calculation mistakes. We can also solve this problem as shown below:
We have given the function $y={{e}^{x}}.\ln x$.
$\Rightarrow y=\dfrac{\ln x}{{{e}^{-x}}}$ ---(4).
Let us differentiate both sides of equation (4) with respect to x.
$\Rightarrow \dfrac{d}{dx}\left( y \right)=\dfrac{d}{dx}\left( \dfrac{\ln x}{{{e}^{-x}}} \right)$ ---(5).
From $\dfrac{u}{v}$ rule of differentiation, we know that $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$. Let us use this result in equation (5).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{d}{dx}\left( \ln x \right)+\ln x.\dfrac{d\left( {{e}^{-x}} \right)}{dx}}{{{\left( {{e}^{-x}} \right)}^{2}}}$ ---(6).
We know that $\dfrac{d\left( \ln x \right)}{dx}=\dfrac{1}{x}$, $\dfrac{d\left( {{e}^{-x}} \right)}{dx}=-{{e}^{-x}}$. Let us use these results in equation (3).
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}-\ln x.\left( -{{e}^{-x}} \right)}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}.\dfrac{1}{x}+{{e}^{-x}}\ln x}{{{\left( {{e}^{-x}} \right)}^{2}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{-x}}\left( \dfrac{1}{x}+\ln x \right)}{{{e}^{-2x}}}$.
$\Rightarrow \dfrac{dy}{dx}=\dfrac{{{e}^{x}}\left( 1+x\ln x \right)}{x}$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
