
Find the derivative of the following function. \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\]
Answer
615.3k+ views
- Hint: To find the derivative of the function given in the question, one must start by simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.
Complete step-by-step solution -
To find the derivative of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\], we will differentiate it with respect to the variable x using some logarithmic properties.
We will first simplify the given function.
We know that \[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting \[a={{x}^{-5}},b=3\], we get\[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}.....\left( 1 \right)\].
We know that \[\log {{a}^{b}}=b\log a\].
Substituting \[a=x,b=-5\], we get \[\log {{x}^{-5}}=-5\log x\].
Substituting the above equation in equation (1), we get \[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}=\dfrac{-5\log x}{\log 3}.....\left( 2 \right)\].
We know that 243 can be factorized as \[243={{3}^{5}}\].
We know that \[{{\log }_{a}}{{a}^{b}}=b{{\log }_{a}}a=b\].
Substituting \[a=3,b=5\], we get \[{{\log }_{3}}243={{\log }_{3}}{{3}^{5}}=5.....\left( 3 \right)\].
Substituting equation (2) and (3) in the given equation of function, we get \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5=\left| \dfrac{-5\log x}{\log 3}\times \dfrac{1}{5}-1 \right|-5=\left| \dfrac{-\log x}{\log 3}-1 \right|-5.....\left( 4 \right)\].
Case1: If \[x>1\], we have \[\log x>0\].Thus, we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if \[x>1\].
Case2: If \[x<1\], we have \[\log x<0\].Thus, we have \[\dfrac{-\log x}{\log 3}>0\]. We will remove the modulus depending if \[\dfrac{-\log x}{\log 3}\] is greater or less than 1.
Case2 (a): If \[\dfrac{-\log x}{\log 3}>1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{-\log x}{\log 3}-1-5=\dfrac{-\log x}{\log 3}-6\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{-1}{\log 3},b=-6\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\] if \[x<1\] and \[\dfrac{-\log x}{\log 3}>1\].
Case2 (b): If \[\dfrac{-\log x}{\log 3}<1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if\[x<1\] and \[\dfrac{-\log x}{\log 3}<1\].
Note: The first derivative of any function signifies the slope of the function. Also, we get different values of derivatives of the function based on different values of x. Thus, one should remove modulus carefully considering all the cases.
Complete step-by-step solution -
To find the derivative of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\], we will differentiate it with respect to the variable x using some logarithmic properties.
We will first simplify the given function.
We know that \[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting \[a={{x}^{-5}},b=3\], we get\[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}.....\left( 1 \right)\].
We know that \[\log {{a}^{b}}=b\log a\].
Substituting \[a=x,b=-5\], we get \[\log {{x}^{-5}}=-5\log x\].
Substituting the above equation in equation (1), we get \[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}=\dfrac{-5\log x}{\log 3}.....\left( 2 \right)\].
We know that 243 can be factorized as \[243={{3}^{5}}\].
We know that \[{{\log }_{a}}{{a}^{b}}=b{{\log }_{a}}a=b\].
Substituting \[a=3,b=5\], we get \[{{\log }_{3}}243={{\log }_{3}}{{3}^{5}}=5.....\left( 3 \right)\].
Substituting equation (2) and (3) in the given equation of function, we get \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5=\left| \dfrac{-5\log x}{\log 3}\times \dfrac{1}{5}-1 \right|-5=\left| \dfrac{-\log x}{\log 3}-1 \right|-5.....\left( 4 \right)\].
Case1: If \[x>1\], we have \[\log x>0\].Thus, we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if \[x>1\].
Case2: If \[x<1\], we have \[\log x<0\].Thus, we have \[\dfrac{-\log x}{\log 3}>0\]. We will remove the modulus depending if \[\dfrac{-\log x}{\log 3}\] is greater or less than 1.
Case2 (a): If \[\dfrac{-\log x}{\log 3}>1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{-\log x}{\log 3}-1-5=\dfrac{-\log x}{\log 3}-6\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{-1}{\log 3},b=-6\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\] if \[x<1\] and \[\dfrac{-\log x}{\log 3}>1\].
Case2 (b): If \[\dfrac{-\log x}{\log 3}<1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if\[x<1\] and \[\dfrac{-\log x}{\log 3}<1\].
Note: The first derivative of any function signifies the slope of the function. Also, we get different values of derivatives of the function based on different values of x. Thus, one should remove modulus carefully considering all the cases.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

