
Find the derivative of the following function. \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\]
Answer
600.6k+ views
- Hint: To find the derivative of the function given in the question, one must start by simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.
Complete step-by-step solution -
To find the derivative of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\], we will differentiate it with respect to the variable x using some logarithmic properties.
We will first simplify the given function.
We know that \[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting \[a={{x}^{-5}},b=3\], we get\[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}.....\left( 1 \right)\].
We know that \[\log {{a}^{b}}=b\log a\].
Substituting \[a=x,b=-5\], we get \[\log {{x}^{-5}}=-5\log x\].
Substituting the above equation in equation (1), we get \[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}=\dfrac{-5\log x}{\log 3}.....\left( 2 \right)\].
We know that 243 can be factorized as \[243={{3}^{5}}\].
We know that \[{{\log }_{a}}{{a}^{b}}=b{{\log }_{a}}a=b\].
Substituting \[a=3,b=5\], we get \[{{\log }_{3}}243={{\log }_{3}}{{3}^{5}}=5.....\left( 3 \right)\].
Substituting equation (2) and (3) in the given equation of function, we get \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5=\left| \dfrac{-5\log x}{\log 3}\times \dfrac{1}{5}-1 \right|-5=\left| \dfrac{-\log x}{\log 3}-1 \right|-5.....\left( 4 \right)\].
Case1: If \[x>1\], we have \[\log x>0\].Thus, we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if \[x>1\].
Case2: If \[x<1\], we have \[\log x<0\].Thus, we have \[\dfrac{-\log x}{\log 3}>0\]. We will remove the modulus depending if \[\dfrac{-\log x}{\log 3}\] is greater or less than 1.
Case2 (a): If \[\dfrac{-\log x}{\log 3}>1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{-\log x}{\log 3}-1-5=\dfrac{-\log x}{\log 3}-6\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{-1}{\log 3},b=-6\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\] if \[x<1\] and \[\dfrac{-\log x}{\log 3}>1\].
Case2 (b): If \[\dfrac{-\log x}{\log 3}<1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if\[x<1\] and \[\dfrac{-\log x}{\log 3}<1\].
Note: The first derivative of any function signifies the slope of the function. Also, we get different values of derivatives of the function based on different values of x. Thus, one should remove modulus carefully considering all the cases.
Complete step-by-step solution -
To find the derivative of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\], we will differentiate it with respect to the variable x using some logarithmic properties.
We will first simplify the given function.
We know that \[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting \[a={{x}^{-5}},b=3\], we get\[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}.....\left( 1 \right)\].
We know that \[\log {{a}^{b}}=b\log a\].
Substituting \[a=x,b=-5\], we get \[\log {{x}^{-5}}=-5\log x\].
Substituting the above equation in equation (1), we get \[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}=\dfrac{-5\log x}{\log 3}.....\left( 2 \right)\].
We know that 243 can be factorized as \[243={{3}^{5}}\].
We know that \[{{\log }_{a}}{{a}^{b}}=b{{\log }_{a}}a=b\].
Substituting \[a=3,b=5\], we get \[{{\log }_{3}}243={{\log }_{3}}{{3}^{5}}=5.....\left( 3 \right)\].
Substituting equation (2) and (3) in the given equation of function, we get \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5=\left| \dfrac{-5\log x}{\log 3}\times \dfrac{1}{5}-1 \right|-5=\left| \dfrac{-\log x}{\log 3}-1 \right|-5.....\left( 4 \right)\].
Case1: If \[x>1\], we have \[\log x>0\].Thus, we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if \[x>1\].
Case2: If \[x<1\], we have \[\log x<0\].Thus, we have \[\dfrac{-\log x}{\log 3}>0\]. We will remove the modulus depending if \[\dfrac{-\log x}{\log 3}\] is greater or less than 1.
Case2 (a): If \[\dfrac{-\log x}{\log 3}>1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{-\log x}{\log 3}-1-5=\dfrac{-\log x}{\log 3}-6\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{-1}{\log 3},b=-6\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\] if \[x<1\] and \[\dfrac{-\log x}{\log 3}>1\].
Case2 (b): If \[\dfrac{-\log x}{\log 3}<1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if\[x<1\] and \[\dfrac{-\log x}{\log 3}<1\].
Note: The first derivative of any function signifies the slope of the function. Also, we get different values of derivatives of the function based on different values of x. Thus, one should remove modulus carefully considering all the cases.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

