
Find the derivative of the following function. \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\]
Answer
517.8k+ views
- Hint: To find the derivative of the function given in the question, one must start by simplifying the given function using properties of logarithmic function and then differentiating the terms given in the function using sum and product rule of differentiation.
Complete step-by-step solution -
To find the derivative of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\], we will differentiate it with respect to the variable x using some logarithmic properties.
We will first simplify the given function.
We know that \[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting \[a={{x}^{-5}},b=3\], we get\[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}.....\left( 1 \right)\].
We know that \[\log {{a}^{b}}=b\log a\].
Substituting \[a=x,b=-5\], we get \[\log {{x}^{-5}}=-5\log x\].
Substituting the above equation in equation (1), we get \[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}=\dfrac{-5\log x}{\log 3}.....\left( 2 \right)\].
We know that 243 can be factorized as \[243={{3}^{5}}\].
We know that \[{{\log }_{a}}{{a}^{b}}=b{{\log }_{a}}a=b\].
Substituting \[a=3,b=5\], we get \[{{\log }_{3}}243={{\log }_{3}}{{3}^{5}}=5.....\left( 3 \right)\].
Substituting equation (2) and (3) in the given equation of function, we get \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5=\left| \dfrac{-5\log x}{\log 3}\times \dfrac{1}{5}-1 \right|-5=\left| \dfrac{-\log x}{\log 3}-1 \right|-5.....\left( 4 \right)\].
Case1: If \[x>1\], we have \[\log x>0\].Thus, we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if \[x>1\].
Case2: If \[x<1\], we have \[\log x<0\].Thus, we have \[\dfrac{-\log x}{\log 3}>0\]. We will remove the modulus depending if \[\dfrac{-\log x}{\log 3}\] is greater or less than 1.
Case2 (a): If \[\dfrac{-\log x}{\log 3}>1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{-\log x}{\log 3}-1-5=\dfrac{-\log x}{\log 3}-6\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{-1}{\log 3},b=-6\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\] if \[x<1\] and \[\dfrac{-\log x}{\log 3}>1\].
Case2 (b): If \[\dfrac{-\log x}{\log 3}<1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if\[x<1\] and \[\dfrac{-\log x}{\log 3}<1\].
Note: The first derivative of any function signifies the slope of the function. Also, we get different values of derivatives of the function based on different values of x. Thus, one should remove modulus carefully considering all the cases.
Complete step-by-step solution -
To find the derivative of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\], we will differentiate it with respect to the variable x using some logarithmic properties.
We will first simplify the given function.
We know that \[{{\log }_{b}}a=\dfrac{\log a}{\log b}\].
Substituting \[a={{x}^{-5}},b=3\], we get\[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}.....\left( 1 \right)\].
We know that \[\log {{a}^{b}}=b\log a\].
Substituting \[a=x,b=-5\], we get \[\log {{x}^{-5}}=-5\log x\].
Substituting the above equation in equation (1), we get \[{{\log }_{3}}{{x}^{-5}}=\dfrac{\log {{x}^{-5}}}{\log 3}=\dfrac{-5\log x}{\log 3}.....\left( 2 \right)\].
We know that 243 can be factorized as \[243={{3}^{5}}\].
We know that \[{{\log }_{a}}{{a}^{b}}=b{{\log }_{a}}a=b\].
Substituting \[a=3,b=5\], we get \[{{\log }_{3}}243={{\log }_{3}}{{3}^{5}}=5.....\left( 3 \right)\].
Substituting equation (2) and (3) in the given equation of function, we get \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5=\left| \dfrac{-5\log x}{\log 3}\times \dfrac{1}{5}-1 \right|-5=\left| \dfrac{-\log x}{\log 3}-1 \right|-5.....\left( 4 \right)\].
Case1: If \[x>1\], we have \[\log x>0\].Thus, we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if \[x>1\].
Case2: If \[x<1\], we have \[\log x<0\].Thus, we have \[\dfrac{-\log x}{\log 3}>0\]. We will remove the modulus depending if \[\dfrac{-\log x}{\log 3}\] is greater or less than 1.
Case2 (a): If \[\dfrac{-\log x}{\log 3}>1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{-\log x}{\log 3}-1-5=\dfrac{-\log x}{\log 3}-6\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{-1}{\log 3},b=-6\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{-1}{x\log 3}\] if \[x<1\] and \[\dfrac{-\log x}{\log 3}>1\].
Case2 (b): If \[\dfrac{-\log x}{\log 3}<1\], we have \[y=\left| \dfrac{-\log x}{\log 3}-1 \right|-5=\dfrac{\log x}{\log 3}+1-5=\dfrac{\log x}{\log 3}-4\].
We know that differentiation of any function of the form \[y=a\log x+b\] is \[\dfrac{dy}{dx}=\dfrac{a}{x}\].
Substituting \[a=\dfrac{1}{\log 3},b=-4\] in the above equation, we have \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\].
We know that the differentiation of a constant function with respect to any variable is 0.
Thus, differentiation of the function \[y=\left| \dfrac{{{\log }_{3}}{{x}^{-5}}}{{{\log }_{3}}243}-1 \right|-5\] is \[\dfrac{dy}{dx}=\dfrac{1}{x\log 3}\] if\[x<1\] and \[\dfrac{-\log x}{\log 3}<1\].
Note: The first derivative of any function signifies the slope of the function. Also, we get different values of derivatives of the function based on different values of x. Thus, one should remove modulus carefully considering all the cases.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE

How much is 23 kg in pounds class 11 chemistry CBSE
