
Find the derivative of $\tan \left( {ax + b} \right)$ from the first principle?
Answer
477.6k+ views
Hint: There are two ways to do this question. One way is by directly applying the formula or we can say chain rule of differentiation. The other way is doing it by using the first principle. In first principle we have to use a formula \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\] where $f(x) = \tan (ax + b)$ to do this question.
Formula used: \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Complete step by step solution:
Using the derivative definition, if:
\[ \Rightarrow f(x) = tan(ax + b)\]
Then, the derivative f'(x) is given by:
\[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{tan(a(x + h) + b) - tan(ax + b)}}{h}\]
Now using the formula $\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{\dfrac{{tan(ax + b) + tanah}}{{1 - tan(ax + b)tanah}} - tan(ax + b)}}{h}\]
Now, taking L.C.M
$ \Rightarrow li{m_{h \to 0}}\dfrac{{\dfrac{{tan(ax + b) + tanah - tan\left( {ax + b} \right)(1 - tan(ax + b)tanah)}}{{1 - tan(ax + b)tanah}}}}{h}$
On simplification, we get
$ \Rightarrow li{m_{h \to 0}}\dfrac{{tan(ax + b) + tanah - tan(ax + b) + tan2(ax + b)tanah}}{{h(1 - tan(ax + b)tanah)}}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{tanah(1 + ta{n^2}(ax + b))}}{{h(1 - tan(ax + b)tanah)}}\]
Now, separating the terms
$ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + ta{n^2}(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot \dfrac{{tanah}}{h}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
Consider the first limit
\[{L_1} = li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}}\]
\[ \Rightarrow \dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)0}}\]
\[ \Rightarrow 1 + ta{n^2}(ax + b)\]
\[ \Rightarrow se{c^2}(ax + b)\]
And, now the second limit:
\[{L_2} = li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{{cosah}} \cdot \dfrac{1}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{h} \cdot \dfrac{1}{{cosah}}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot \dfrac{1}{{cosah}}\]
Now, splitting the limits
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
\[ \Rightarrow a\;li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
And for this limit we have:
\[ \Rightarrow li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } = 1\;and\;li{m_{h \to 0}}\dfrac{1}{{cosah}} = 1\]
Leading to:
\[{L_2} = a\]
Combining these results, we have
$ \Rightarrow f'(x) = se{c^2}(ax + b) \cdot a$
$ \Rightarrow ase{c^2}(ax + b)$
Therefore, the required derivative is $ase{c^2}(ax + b)$.
Note:
Derivative by first principle refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method. The derivative is a measure of the instantaneous rate of change, which is equal to \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Formula used: \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Complete step by step solution:
Using the derivative definition, if:
\[ \Rightarrow f(x) = tan(ax + b)\]
Then, the derivative f'(x) is given by:
\[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{tan(a(x + h) + b) - tan(ax + b)}}{h}\]
Now using the formula $\tan \left( {x + y} \right) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
\[ \Rightarrow li{m_{h \to 0}} = \dfrac{{\dfrac{{tan(ax + b) + tanah}}{{1 - tan(ax + b)tanah}} - tan(ax + b)}}{h}\]
Now, taking L.C.M
$ \Rightarrow li{m_{h \to 0}}\dfrac{{\dfrac{{tan(ax + b) + tanah - tan\left( {ax + b} \right)(1 - tan(ax + b)tanah)}}{{1 - tan(ax + b)tanah}}}}{h}$
On simplification, we get
$ \Rightarrow li{m_{h \to 0}}\dfrac{{tan(ax + b) + tanah - tan(ax + b) + tan2(ax + b)tanah}}{{h(1 - tan(ax + b)tanah)}}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{tanah(1 + ta{n^2}(ax + b))}}{{h(1 - tan(ax + b)tanah)}}\]
Now, separating the terms
$ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + ta{n^2}(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot \dfrac{{tanah}}{h}$
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}} \cdot li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
Consider the first limit
\[{L_1} = li{m_{h \to 0}}\dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)tanah}}\]
\[ \Rightarrow \dfrac{{1 + tan2(ax + b)}}{{1 - tan(ax + b)0}}\]
\[ \Rightarrow 1 + ta{n^2}(ax + b)\]
\[ \Rightarrow se{c^2}(ax + b)\]
And, now the second limit:
\[{L_2} = li{m_{h \to 0}}\dfrac{{tanah}}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{{cosah}} \cdot \dfrac{1}{h}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{sinah}}{h} \cdot \dfrac{1}{{cosah}}\]
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot \dfrac{1}{{cosah}}\]
Now, splitting the limits
\[ \Rightarrow li{m_{h \to 0}}\dfrac{{asinah}}{{ah}} \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
\[ \Rightarrow a\;li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } \cdot li{m_{h \to 0}}\dfrac{1}{{cosah}}\]
And for this limit we have:
\[ \Rightarrow li{m_{\theta \to 0}}\dfrac{{sin\theta }}{\theta } = 1\;and\;li{m_{h \to 0}}\dfrac{1}{{cosah}} = 1\]
Leading to:
\[{L_2} = a\]
Combining these results, we have
$ \Rightarrow f'(x) = se{c^2}(ax + b) \cdot a$
$ \Rightarrow ase{c^2}(ax + b)$
Therefore, the required derivative is $ase{c^2}(ax + b)$.
Note:
Derivative by first principle refers to using algebra to find a general expression for the slope of a curve. It is also known as the delta method. The derivative is a measure of the instantaneous rate of change, which is equal to \[f'(x) = {\lim _{h \to 0}}\dfrac{{f(x + h) - f(x)}}{h}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

