
Find the derivative of \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]with respect to \[{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)\]is
A.\[\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]
B.\[\dfrac{3}{\sqrt{1-{{x}^{2}}}}\]
C.\[3\]
D.\[\dfrac{1}{3}\]
Answer
609.9k+ views
Hint: Firstly we have to get thought that we have to replace by \[\sin \theta \] and then we have to proceed. We must know the basic trigonometric functions that is \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]and \[\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta \] and the concept of inverse function that is if \[x=\sin \theta \] then \[\theta ={{\sin }^{-1}}x\]
Complete step-by-step answer:
Let us now take \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .. . .(1)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (1)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{{{\cos }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .(3)
\[={{\tan }^{-1}}\left( \tan \theta \right)\]
\[=\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Let us now take \[{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .(5)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (5)
\[={{\sin }^{-1}}\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . .(6)
\[={{\sin }^{-1}}\left( \sin 3\theta \right)\]. . . . . . . . . . . . . . . . . . .. .. .. .. .. . .(7)
\[=3\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]
\[=3{{\sin }^{-1}}x\]. . . . . . . . . . . . . . .. . . . . . .(8)
So we have to find the derivative of \[{{\sin }^{-1}}x\]with respect to \[3{{\sin }^{-1}}x\]
\[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]
\[\dfrac{d}{dx}\left( 3{{\sin }^{-1}}x \right)=\dfrac{3}{\sqrt{1-{{x}^{2}}}}\]
So, the ratio of derivative \[{{\sin }^{-1}}x\] with respect to \[3{{\sin }^{-1}}x\]is \[\dfrac{1}{3}\]
So the correct option is option (D)
Note:The derivative of \[{{\sin }^{-1}}x\] is given by \[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. This problem is solved using trigonometric functions. If we did not get the thought that we have to use trigonometric function the we can proceed using derivative formulas of \[{{\sin }^{-1}}x\] and \[{{\tan }^{-1}}x\],but if we does not use trigonometric functions to do the sum the answer process is very big. So better to use trigonometric functions
Complete step-by-step answer:
Let us now take \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .. . .(1)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (1)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{{{\cos }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .(3)
\[={{\tan }^{-1}}\left( \tan \theta \right)\]
\[=\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Let us now take \[{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .(5)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (5)
\[={{\sin }^{-1}}\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . .(6)
\[={{\sin }^{-1}}\left( \sin 3\theta \right)\]. . . . . . . . . . . . . . . . . . .. .. .. .. .. . .(7)
\[=3\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]
\[=3{{\sin }^{-1}}x\]. . . . . . . . . . . . . . .. . . . . . .(8)
So we have to find the derivative of \[{{\sin }^{-1}}x\]with respect to \[3{{\sin }^{-1}}x\]
\[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]
\[\dfrac{d}{dx}\left( 3{{\sin }^{-1}}x \right)=\dfrac{3}{\sqrt{1-{{x}^{2}}}}\]
So, the ratio of derivative \[{{\sin }^{-1}}x\] with respect to \[3{{\sin }^{-1}}x\]is \[\dfrac{1}{3}\]
So the correct option is option (D)
Note:The derivative of \[{{\sin }^{-1}}x\] is given by \[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. This problem is solved using trigonometric functions. If we did not get the thought that we have to use trigonometric function the we can proceed using derivative formulas of \[{{\sin }^{-1}}x\] and \[{{\tan }^{-1}}x\],but if we does not use trigonometric functions to do the sum the answer process is very big. So better to use trigonometric functions
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

