
Find the derivative of \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]with respect to \[{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)\]is
A.\[\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]
B.\[\dfrac{3}{\sqrt{1-{{x}^{2}}}}\]
C.\[3\]
D.\[\dfrac{1}{3}\]
Answer
596.1k+ views
Hint: Firstly we have to get thought that we have to replace by \[\sin \theta \] and then we have to proceed. We must know the basic trigonometric functions that is \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }\]and \[\sin 3\theta =3\sin \theta -4{{\sin }^{3}}\theta \] and the concept of inverse function that is if \[x=\sin \theta \] then \[\theta ={{\sin }^{-1}}x\]
Complete step-by-step answer:
Let us now take \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .. . .(1)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (1)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{{{\cos }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .(3)
\[={{\tan }^{-1}}\left( \tan \theta \right)\]
\[=\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Let us now take \[{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .(5)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (5)
\[={{\sin }^{-1}}\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . .(6)
\[={{\sin }^{-1}}\left( \sin 3\theta \right)\]. . . . . . . . . . . . . . . . . . .. .. .. .. .. . .(7)
\[=3\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]
\[=3{{\sin }^{-1}}x\]. . . . . . . . . . . . . . .. . . . . . .(8)
So we have to find the derivative of \[{{\sin }^{-1}}x\]with respect to \[3{{\sin }^{-1}}x\]
\[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]
\[\dfrac{d}{dx}\left( 3{{\sin }^{-1}}x \right)=\dfrac{3}{\sqrt{1-{{x}^{2}}}}\]
So, the ratio of derivative \[{{\sin }^{-1}}x\] with respect to \[3{{\sin }^{-1}}x\]is \[\dfrac{1}{3}\]
So the correct option is option (D)
Note:The derivative of \[{{\sin }^{-1}}x\] is given by \[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. This problem is solved using trigonometric functions. If we did not get the thought that we have to use trigonometric function the we can proceed using derivative formulas of \[{{\sin }^{-1}}x\] and \[{{\tan }^{-1}}x\],but if we does not use trigonometric functions to do the sum the answer process is very big. So better to use trigonometric functions
Complete step-by-step answer:
Let us now take \[{{\tan }^{-1}}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .. . .(1)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (1)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(2)
\[={{\tan }^{-1}}\left( \dfrac{\sin \theta }{\sqrt{{{\cos }^{2}}\theta }} \right)\]. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .(3)
\[={{\tan }^{-1}}\left( \tan \theta \right)\]
\[=\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Let us now take \[{{\sin }^{-1}}\left( 3x-4{{x}^{3}} \right)\]. . . . . . . . . . . . . . . . . . . . . . . .(5)
Replace the value of x by \[\sin \theta \], then we will get
\[x=\sin \theta \] in equation (5)
\[={{\sin }^{-1}}\left( 3\sin \theta -4{{\sin }^{3}}\theta \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . .(6)
\[={{\sin }^{-1}}\left( \sin 3\theta \right)\]. . . . . . . . . . . . . . . . . . .. .. .. .. .. . .(7)
\[=3\theta \]
We have assumed that \[x=\sin \theta \]
So \[\theta ={{\sin }^{-1}}x\]
\[=3{{\sin }^{-1}}x\]. . . . . . . . . . . . . . .. . . . . . .(8)
So we have to find the derivative of \[{{\sin }^{-1}}x\]with respect to \[3{{\sin }^{-1}}x\]
\[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]
\[\dfrac{d}{dx}\left( 3{{\sin }^{-1}}x \right)=\dfrac{3}{\sqrt{1-{{x}^{2}}}}\]
So, the ratio of derivative \[{{\sin }^{-1}}x\] with respect to \[3{{\sin }^{-1}}x\]is \[\dfrac{1}{3}\]
So the correct option is option (D)
Note:The derivative of \[{{\sin }^{-1}}x\] is given by \[\dfrac{d}{dx}\left( {{\sin }^{-1}}x \right)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}\]. This problem is solved using trigonometric functions. If we did not get the thought that we have to use trigonometric function the we can proceed using derivative formulas of \[{{\sin }^{-1}}x\] and \[{{\tan }^{-1}}x\],but if we does not use trigonometric functions to do the sum the answer process is very big. So better to use trigonometric functions
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

