Answer

Verified

341.1k+ views

**Hint:**The above concept is based on derivation of the given expression. The main approach to solve the expression is to reduce the whole power by 1 and then apply chain rule to the terms under the square root to get the derivative of the given expression.

**Complete step by step solution:**

In mathematics derivative is a way to show instantaneous rate of change. The above given expression has square root sign which needs to be differentiated when the function contains radical sign, the power rule seems difficult to apply. Using a simple exponent substitution, differentiating this function becomes very straightforward and easy.

The above expression can be solved by implicit differentiation where we differentiate each side of an equation with two variables x and y by treating one of the variables as a function of others. This can be done by applying chain rule. The chain rule tells us how to find derivatives of composite function. The chain rule can be written as:

\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}\]

Therefore, we can write it has

\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]

So now,

\[\dfrac{d}{{dx}}\left( {\sqrt u } \right) = \dfrac{1}{{2\sqrt u }}\dfrac{{du}}{{dx}}\]

Therefore, now differentiating it,

\[

\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }} \times \dfrac{d}{{dx}}\left( {{x^2} + {y^2}} \right) \\

\Rightarrow\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right) \\ \]

Now by opening the brackets and multiplying the terms inside it.

\[

\Rightarrow\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right)= \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}2x + \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}2y\dfrac{{dy}}{{dx}} \\

\therefore\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} + \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}\dfrac{{dy}}{{dx}} \]

Therefore, we get the above solution.

**Note:**An important thing to note is that the square root is differentiated in such a way that the square power i.e., \[\dfrac{1}{2}\] is subtracted by 1 and we get \[\dfrac{1}{2} - 1 = - \dfrac{1}{2}\].Since we get negative value in the power the term goes in the denominator and also \[\dfrac{1}{2}\] is written by multiplying it.

Recently Updated Pages

Basicity of sulphurous acid and sulphuric acid are

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the stopping potential when the metal with class 12 physics JEE_Main

The momentum of a photon is 2 times 10 16gm cmsec Its class 12 physics JEE_Main

Using the following information to help you answer class 12 chemistry CBSE

Why should electric field lines never cross each other class 12 physics CBSE

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Why is the adrenaline hormone called fight or flight class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between lanthanoids and actinoids class 12 chemistry CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples of unisexual and bisexual flowers

Open circulatory system is present in I Arthropods class 12 biology CBSE

Name the highest peak of the Indian Himalayas class 8 social science CBSE