How do you find the derivative of \[\sqrt {{x^2} + {y^2}} \] ?
Answer
Verified
439.2k+ views
Hint: The above concept is based on derivation of the given expression. The main approach to solve the expression is to reduce the whole power by 1 and then apply chain rule to the terms under the square root to get the derivative of the given expression.
Complete step by step solution:
In mathematics derivative is a way to show instantaneous rate of change. The above given expression has square root sign which needs to be differentiated when the function contains radical sign, the power rule seems difficult to apply. Using a simple exponent substitution, differentiating this function becomes very straightforward and easy.
The above expression can be solved by implicit differentiation where we differentiate each side of an equation with two variables x and y by treating one of the variables as a function of others. This can be done by applying chain rule. The chain rule tells us how to find derivatives of composite function. The chain rule can be written as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}\]
Therefore, we can write it has
\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]
So now,
\[\dfrac{d}{{dx}}\left( {\sqrt u } \right) = \dfrac{1}{{2\sqrt u }}\dfrac{{du}}{{dx}}\]
Therefore, now differentiating it,
\[
\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }} \times \dfrac{d}{{dx}}\left( {{x^2} + {y^2}} \right) \\
\Rightarrow\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right) \\ \]
Now by opening the brackets and multiplying the terms inside it.
\[
\Rightarrow\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right)= \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}2x + \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}2y\dfrac{{dy}}{{dx}} \\
\therefore\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} + \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}\dfrac{{dy}}{{dx}} \]
Therefore, we get the above solution.
Note: An important thing to note is that the square root is differentiated in such a way that the square power i.e., \[\dfrac{1}{2}\] is subtracted by 1 and we get \[\dfrac{1}{2} - 1 = - \dfrac{1}{2}\].Since we get negative value in the power the term goes in the denominator and also \[\dfrac{1}{2}\] is written by multiplying it.
Complete step by step solution:
In mathematics derivative is a way to show instantaneous rate of change. The above given expression has square root sign which needs to be differentiated when the function contains radical sign, the power rule seems difficult to apply. Using a simple exponent substitution, differentiating this function becomes very straightforward and easy.
The above expression can be solved by implicit differentiation where we differentiate each side of an equation with two variables x and y by treating one of the variables as a function of others. This can be done by applying chain rule. The chain rule tells us how to find derivatives of composite function. The chain rule can be written as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}\]
Therefore, we can write it has
\[\dfrac{d}{{dx}}\left( {\sqrt x } \right) = \dfrac{1}{{2\sqrt x }}\]
So now,
\[\dfrac{d}{{dx}}\left( {\sqrt u } \right) = \dfrac{1}{{2\sqrt u }}\dfrac{{du}}{{dx}}\]
Therefore, now differentiating it,
\[
\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }} \times \dfrac{d}{{dx}}\left( {{x^2} + {y^2}} \right) \\
\Rightarrow\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}\left( {2x + 2y\dfrac{{dy}}{{dx}}} \right) \\ \]
Now by opening the brackets and multiplying the terms inside it.
\[
\Rightarrow\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right)= \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}2x + \dfrac{1}{{2\sqrt {{x^2} + {y^2}} }}2y\dfrac{{dy}}{{dx}} \\
\therefore\dfrac{d}{{dx}}\left( {\sqrt {{x^2} + {y^2}} } \right) = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} + \dfrac{y}{{\sqrt {{x^2} + {y^2}} }}\dfrac{{dy}}{{dx}} \]
Therefore, we get the above solution.
Note: An important thing to note is that the square root is differentiated in such a way that the square power i.e., \[\dfrac{1}{2}\] is subtracted by 1 and we get \[\dfrac{1}{2} - 1 = - \dfrac{1}{2}\].Since we get negative value in the power the term goes in the denominator and also \[\dfrac{1}{2}\] is written by multiplying it.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Draw a labelled sketch of the human eye class 12 physics CBSE
What is a transformer Explain the principle construction class 12 physics CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
What are the major means of transport Explain each class 12 social science CBSE