
Find the derivative of \[sin\text{ }x\] with respect to x from first principles.
Answer
592.5k+ views
Hint: The derivative using the first principal is given by the formula \[\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\], where f(x) is the function to be differentiation with respect to x, and h is tending to zero.
Complete step-by-step answer:
In the question, we have to find the derivative of \[sin\text{ }x\] with respect to x from first principles.
So, for that we will use the formula \[\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\], here the function to be differentiated is \[f\left( x \right)=\text{ }sin\text{ }x\]. Now as per the formula, we have the required derivative as:
\[\begin{align}
& \Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right] \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right) \\
\end{align}\]
Here we can see that the limit is of the form \[\dfrac{0}{0}\], as we have \[\underset{h\to \;0}{\mathop{\lim }}\,\,\,\sin \left( x+h \right)=\sin \left( x \right)\]
So \[\underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right)=\dfrac{0}{0}\]
Hence, here we will use the L-Hopitals rule, where we differentiate the numerator and the denominator separately, as follows:
\[\begin{align}
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right) \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\dfrac{d}{dh}\left( \sin \left( x+h \right)-\sin \left( x \right) \right)}{\dfrac{d}{dh}\left( h \right)} \right) \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\left( \cos \left( x+h \right)-0 \right)}{\left( 1 \right)} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \left( \dfrac{d\left( \sin \left( x+h \right) \right)}{dh}=\cos \left( x+h \right),\,\,\,\dfrac{d\left( \sin \left( x \right) \right)}{dh}=0 \right) \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \cos \left( x+h \right) \right) \\
& \Rightarrow \cos \left( x \right) \\
\end{align}\]
So final, we can say that
\[\begin{align}
& \Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right] \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right) \\
& \Rightarrow \cos \left( x \right) \\
\end{align}\]
Hence the derivative of \[\sin \left( x \right)\] is \[\cos \left( x \right)\].
Note: The limit of the expression is to be found carefully, and when applying the L-Hopitals’ rule, we will separately differentiate the numerator and the denominator and will not use the quotient rule of differentiation.
Complete step-by-step answer:
In the question, we have to find the derivative of \[sin\text{ }x\] with respect to x from first principles.
So, for that we will use the formula \[\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\], here the function to be differentiated is \[f\left( x \right)=\text{ }sin\text{ }x\]. Now as per the formula, we have the required derivative as:
\[\begin{align}
& \Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right] \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right) \\
\end{align}\]
Here we can see that the limit is of the form \[\dfrac{0}{0}\], as we have \[\underset{h\to \;0}{\mathop{\lim }}\,\,\,\sin \left( x+h \right)=\sin \left( x \right)\]
So \[\underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right)=\dfrac{0}{0}\]
Hence, here we will use the L-Hopitals rule, where we differentiate the numerator and the denominator separately, as follows:
\[\begin{align}
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right) \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\dfrac{d}{dh}\left( \sin \left( x+h \right)-\sin \left( x \right) \right)}{\dfrac{d}{dh}\left( h \right)} \right) \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\left( \cos \left( x+h \right)-0 \right)}{\left( 1 \right)} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\because \left( \dfrac{d\left( \sin \left( x+h \right) \right)}{dh}=\cos \left( x+h \right),\,\,\,\dfrac{d\left( \sin \left( x \right) \right)}{dh}=0 \right) \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \cos \left( x+h \right) \right) \\
& \Rightarrow \cos \left( x \right) \\
\end{align}\]
So final, we can say that
\[\begin{align}
& \Rightarrow \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right] \\
& \Rightarrow \underset{h\to \;0}{\mathop{\lim }}\,\left( \dfrac{\sin \left( x+h \right)-\sin \left( x \right)}{h} \right) \\
& \Rightarrow \cos \left( x \right) \\
\end{align}\]
Hence the derivative of \[\sin \left( x \right)\] is \[\cos \left( x \right)\].
Note: The limit of the expression is to be found carefully, and when applying the L-Hopitals’ rule, we will separately differentiate the numerator and the denominator and will not use the quotient rule of differentiation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

