
Find the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ from first principles.
Answer
576.6k+ views
Hint: Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$. We will use this information to find the derivative of the required function. Also we will use trigonometric results.
Complete step-by-step answer:
In this problem, we have to find the derivative of $\sin \left( {x + 1} \right)$ by using first principle. For this, let us consider $y = \sin \left( {x + 1} \right)$ or $f\left( x \right) = \sin \left( {x + 1} \right)$. Let us replace $x$ by $x + h$. Therefore, we get $f\left( {x + h} \right) = \sin \left( {x + h + 1} \right)$.
Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right)$. Now we will substitute $f\left( {x + h} \right)$ and $f\left( x \right)$ in equation $\left( 1 \right)$ and evaluate the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\
$
Now on the RHS of equation $\left( 2 \right)$, we will use the trigonometric identity which is given by
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\
$
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation $\left( 3 \right)$, we will get
$\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)$
Now we are going to use the result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ on RHS of equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\
$
Let us put $h = 0$ on the RHS of equation $\left( 5 \right)$ to find the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\
$
Therefore, the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ is $\cos \left( {x + 1} \right)$.
Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of $\sin \left( {x + 1} \right)$ by using the basic formula of derivative and chain rule.
Complete step-by-step answer:
In this problem, we have to find the derivative of $\sin \left( {x + 1} \right)$ by using first principle. For this, let us consider $y = \sin \left( {x + 1} \right)$ or $f\left( x \right) = \sin \left( {x + 1} \right)$. Let us replace $x$ by $x + h$. Therefore, we get $f\left( {x + h} \right) = \sin \left( {x + h + 1} \right)$.
Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right)$. Now we will substitute $f\left( {x + h} \right)$ and $f\left( x \right)$ in equation $\left( 1 \right)$ and evaluate the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\
$
Now on the RHS of equation $\left( 2 \right)$, we will use the trigonometric identity which is given by
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\
$
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation $\left( 3 \right)$, we will get
$\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)$
Now we are going to use the result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ on RHS of equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\
$
Let us put $h = 0$ on the RHS of equation $\left( 5 \right)$ to find the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\
$
Therefore, the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ is $\cos \left( {x + 1} \right)$.
Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of $\sin \left( {x + 1} \right)$ by using the basic formula of derivative and chain rule.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

