
Find the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ from first principles.
Answer
511.2k+ views
Hint: Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$. We will use this information to find the derivative of the required function. Also we will use trigonometric results.
Complete step-by-step answer:
In this problem, we have to find the derivative of $\sin \left( {x + 1} \right)$ by using first principle. For this, let us consider $y = \sin \left( {x + 1} \right)$ or $f\left( x \right) = \sin \left( {x + 1} \right)$. Let us replace $x$ by $x + h$. Therefore, we get $f\left( {x + h} \right) = \sin \left( {x + h + 1} \right)$.
Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right)$. Now we will substitute $f\left( {x + h} \right)$ and $f\left( x \right)$ in equation $\left( 1 \right)$ and evaluate the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\
$
Now on the RHS of equation $\left( 2 \right)$, we will use the trigonometric identity which is given by
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\
$
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation $\left( 3 \right)$, we will get
$\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)$
Now we are going to use the result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ on RHS of equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\
$
Let us put $h = 0$ on the RHS of equation $\left( 5 \right)$ to find the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\
$
Therefore, the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ is $\cos \left( {x + 1} \right)$.
Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of $\sin \left( {x + 1} \right)$ by using the basic formula of derivative and chain rule.
Complete step-by-step answer:
In this problem, we have to find the derivative of $\sin \left( {x + 1} \right)$ by using first principle. For this, let us consider $y = \sin \left( {x + 1} \right)$ or $f\left( x \right) = \sin \left( {x + 1} \right)$. Let us replace $x$ by $x + h$. Therefore, we get $f\left( {x + h} \right) = \sin \left( {x + h + 1} \right)$.
Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right)$. Now we will substitute $f\left( {x + h} \right)$ and $f\left( x \right)$ in equation $\left( 1 \right)$ and evaluate the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\
$
Now on the RHS of equation $\left( 2 \right)$, we will use the trigonometric identity which is given by
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\
$
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation $\left( 3 \right)$, we will get
$\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)$
Now we are going to use the result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ on RHS of equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\
$
Let us put $h = 0$ on the RHS of equation $\left( 5 \right)$ to find the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\
$
Therefore, the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ is $\cos \left( {x + 1} \right)$.
Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of $\sin \left( {x + 1} \right)$ by using the basic formula of derivative and chain rule.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE
