
Find the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ from first principles.
Answer
590.7k+ views
Hint: Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}$. We will use this information to find the derivative of the required function. Also we will use trigonometric results.
Complete step-by-step answer:
In this problem, we have to find the derivative of $\sin \left( {x + 1} \right)$ by using first principle. For this, let us consider $y = \sin \left( {x + 1} \right)$ or $f\left( x \right) = \sin \left( {x + 1} \right)$. Let us replace $x$ by $x + h$. Therefore, we get $f\left( {x + h} \right) = \sin \left( {x + h + 1} \right)$.
Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right)$. Now we will substitute $f\left( {x + h} \right)$ and $f\left( x \right)$ in equation $\left( 1 \right)$ and evaluate the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\
$
Now on the RHS of equation $\left( 2 \right)$, we will use the trigonometric identity which is given by
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\
$
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation $\left( 3 \right)$, we will get
$\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)$
Now we are going to use the result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ on RHS of equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\
$
Let us put $h = 0$ on the RHS of equation $\left( 5 \right)$ to find the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\
$
Therefore, the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ is $\cos \left( {x + 1} \right)$.
Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of $\sin \left( {x + 1} \right)$ by using the basic formula of derivative and chain rule.
Complete step-by-step answer:
In this problem, we have to find the derivative of $\sin \left( {x + 1} \right)$ by using first principle. For this, let us consider $y = \sin \left( {x + 1} \right)$ or $f\left( x \right) = \sin \left( {x + 1} \right)$. Let us replace $x$ by $x + h$. Therefore, we get $f\left( {x + h} \right) = \sin \left( {x + h + 1} \right)$.
Using the first principle, we can write $\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \cdots \cdots \left( 1 \right)$. Now we will substitute $f\left( {x + h} \right)$ and $f\left( x \right)$ in equation $\left( 1 \right)$ and evaluate the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h + 1} \right) - \sin \left( {x + 1} \right)}}{h} \cdots \cdots \left( 2 \right) \\
$
Now on the RHS of equation $\left( 2 \right)$, we will use the trigonometric identity which is given by
$\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left[ {\dfrac{{\left( {x + h + 1} \right) + \left( {x + 1} \right)}}{2}} \right]\sin \left[ {\dfrac{{\left( {x + h + 1} \right) - \left( {x + 1} \right)}}{2}} \right]}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \dfrac{{2\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\sin \left( {\dfrac{h}{2}} \right)}}{h} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \left[ {\cos \left( {\dfrac{{2x + h + 2}}{2}} \right)\dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 3 \right) \\
$
Now we will use the multiplication rule for limits. That is, the product of the limits is the same as the limit of the product of two functions. Therefore, from equation $\left( 3 \right)$, we will get
$\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {\dfrac{h}{2}} \right)}}{{\dfrac{h}{2}}}} \right] \cdots \cdots \left( 4 \right)$
Now we are going to use the result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ on RHS of equation $\left( 4 \right)$. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \left[ {\mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right)} \right]\left( 1 \right)\quad \left[ {\because h \to 0 \Rightarrow \dfrac{h}{2} \to 0} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \mathop {\lim }\limits_{h \to 0} \cos \left( {\dfrac{{2x + h + 2}}{2}} \right) \cdots \cdots \left( 5 \right) \\
$
Let us put $h = 0$ on the RHS of equation $\left( 5 \right)$ to find the limit. Therefore, we get
$
\dfrac{{dy}}{{dx}} = \cos \left( {\dfrac{{2x + 0 + 2}}{2}} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left[ {\dfrac{{2\left( {x + 1} \right)}}{2}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \cos \left( {x + 1} \right) \\
$
Therefore, the derivative of $\sin \left( {x + 1} \right)$ with respect to $x$ is $\cos \left( {x + 1} \right)$.
Note: In this problem, it is mentioned that we have to find the derivative by using first principle. Also we can find the derivative of $\sin \left( {x + 1} \right)$ by using the basic formula of derivative and chain rule.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

