
Find the derivative of $\sin \left( {2{{\sin }^{ - 1}}x} \right)$.
A) $\dfrac{{2\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
B) $\dfrac{{\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
C) $\dfrac{{2\cos \left( {2{{\cos }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
D) $ - \dfrac{{\cos \left( {2{{\cos }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
Answer
591.9k+ views
Hint: First, let $2{\sin ^{ - 1}}x = t$ and differentiate the given function using chain rule. We will apply chain rule because $t$ is also a function of $x$. Then, use the formulas of derivatives and simplify the expression to get the required answer.
Complete step by step solution: First of we will let the expression $2{\sin ^{ - 1}}x = t$ to simplify the expression.
Hence, the expression becomes $\sin \left( t \right)$
Then, we will find the derivative of the $\sin \left( t \right)$, where $t$ is a function of $x$.
We will apply the chain rule to solve its derivative, that is we will first find the derivative of $\sin \left( t \right)$ and multiply it with the derivative of $t$.
We know that the derivative of $\sin x$ is $\cos x$.
Hence, we have,
$\dfrac{d}{{dx}}\sin \left( t \right) = \cos \left( t \right)\dfrac{d}{{dx}}\left( t \right)$
Replace the value of $t$ and differentiate it with respect to $x$.
$\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)\dfrac{d}{{dx}}\left( {2{{\sin }^{ - 1}}x} \right)$
Now, the derivative of ${\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Therefore, we will get,
$
\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)2\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \dfrac{{2\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }} \\
$
Hence, option A is the correct answer.
Note: In this question we have first assumed $2{\sin ^{ - 1}}x = t$ and then differentiated the function, followed by the differentiation of \[t\]. This is called the chain rule of derivatives. We apply the chain rule of derivatives when the function which we want to differentiate is a composite function.
Complete step by step solution: First of we will let the expression $2{\sin ^{ - 1}}x = t$ to simplify the expression.
Hence, the expression becomes $\sin \left( t \right)$
Then, we will find the derivative of the $\sin \left( t \right)$, where $t$ is a function of $x$.
We will apply the chain rule to solve its derivative, that is we will first find the derivative of $\sin \left( t \right)$ and multiply it with the derivative of $t$.
We know that the derivative of $\sin x$ is $\cos x$.
Hence, we have,
$\dfrac{d}{{dx}}\sin \left( t \right) = \cos \left( t \right)\dfrac{d}{{dx}}\left( t \right)$
Replace the value of $t$ and differentiate it with respect to $x$.
$\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)\dfrac{d}{{dx}}\left( {2{{\sin }^{ - 1}}x} \right)$
Now, the derivative of ${\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Therefore, we will get,
$
\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)2\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \dfrac{{2\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }} \\
$
Hence, option A is the correct answer.
Note: In this question we have first assumed $2{\sin ^{ - 1}}x = t$ and then differentiated the function, followed by the differentiation of \[t\]. This is called the chain rule of derivatives. We apply the chain rule of derivatives when the function which we want to differentiate is a composite function.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

