
Find the derivative of $\sin \left( {2{{\sin }^{ - 1}}x} \right)$.
A) $\dfrac{{2\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
B) $\dfrac{{\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
C) $\dfrac{{2\cos \left( {2{{\cos }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
D) $ - \dfrac{{\cos \left( {2{{\cos }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }}$
Answer
578.1k+ views
Hint: First, let $2{\sin ^{ - 1}}x = t$ and differentiate the given function using chain rule. We will apply chain rule because $t$ is also a function of $x$. Then, use the formulas of derivatives and simplify the expression to get the required answer.
Complete step by step solution: First of we will let the expression $2{\sin ^{ - 1}}x = t$ to simplify the expression.
Hence, the expression becomes $\sin \left( t \right)$
Then, we will find the derivative of the $\sin \left( t \right)$, where $t$ is a function of $x$.
We will apply the chain rule to solve its derivative, that is we will first find the derivative of $\sin \left( t \right)$ and multiply it with the derivative of $t$.
We know that the derivative of $\sin x$ is $\cos x$.
Hence, we have,
$\dfrac{d}{{dx}}\sin \left( t \right) = \cos \left( t \right)\dfrac{d}{{dx}}\left( t \right)$
Replace the value of $t$ and differentiate it with respect to $x$.
$\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)\dfrac{d}{{dx}}\left( {2{{\sin }^{ - 1}}x} \right)$
Now, the derivative of ${\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Therefore, we will get,
$
\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)2\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \dfrac{{2\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }} \\
$
Hence, option A is the correct answer.
Note: In this question we have first assumed $2{\sin ^{ - 1}}x = t$ and then differentiated the function, followed by the differentiation of \[t\]. This is called the chain rule of derivatives. We apply the chain rule of derivatives when the function which we want to differentiate is a composite function.
Complete step by step solution: First of we will let the expression $2{\sin ^{ - 1}}x = t$ to simplify the expression.
Hence, the expression becomes $\sin \left( t \right)$
Then, we will find the derivative of the $\sin \left( t \right)$, where $t$ is a function of $x$.
We will apply the chain rule to solve its derivative, that is we will first find the derivative of $\sin \left( t \right)$ and multiply it with the derivative of $t$.
We know that the derivative of $\sin x$ is $\cos x$.
Hence, we have,
$\dfrac{d}{{dx}}\sin \left( t \right) = \cos \left( t \right)\dfrac{d}{{dx}}\left( t \right)$
Replace the value of $t$ and differentiate it with respect to $x$.
$\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)\dfrac{d}{{dx}}\left( {2{{\sin }^{ - 1}}x} \right)$
Now, the derivative of ${\sin ^{ - 1}}x = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
Therefore, we will get,
$
\dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \cos \left( {2{{\sin }^{ - 1}}x} \right)2\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right) \\
\Rightarrow \dfrac{d}{{dx}}\sin \left( {2{{\sin }^{ - 1}}x} \right) = \dfrac{{2\cos \left( {2{{\sin }^{ - 1}}x} \right)}}{{\sqrt {1 - {x^2}} }} \\
$
Hence, option A is the correct answer.
Note: In this question we have first assumed $2{\sin ^{ - 1}}x = t$ and then differentiated the function, followed by the differentiation of \[t\]. This is called the chain rule of derivatives. We apply the chain rule of derivatives when the function which we want to differentiate is a composite function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

