
How do you find the derivative of $ {\sin ^2}\left( {2x + 3} \right)?$
Answer
556.5k+ views
Hint: In this question we have to find the derivative of the given equation.
We can solve the given function to find the derivative of the above given function by using differentiation rules. First let us denote the given function as $ f\left( x \right)$ and then rewrite the given function to derive it easier.
And then differentiate the given function by using power and other differentiation rules to get the result. You will also have to use chain rule to differentiate further.
Hence we can get the required derivative.
Complete step-by-step solution:
Let us take
$ f\left( x \right) = {\sin ^2}\left( {2x + 3} \right)\,$ …. (1)
The above equation can be written in the form as follows
$ f\left( x \right) = {\left( {\sin \left( {2x + 3} \right)} \right)^2}$ …. (2)
Now differentiating the above function we can get the result as follows,
$ f'\left( x \right) = 2\sin \left( {2x + 3} \right)\dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right]\,\,\,\,\,\,\left[ {\because \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}} \right]$ …. (3)
We can differentiate $ \left[ {\sin \left( {2x + 3} \right)} \right]$ directly in the above step, but we are going to differentiate it separately to make it easier and to avoid mistakes.
Now Consider, $ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right]$
Again differentiate we get,
$ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right] = \cos \left( {2x + 3} \right)\dfrac{d}{{dx}}\left[ {\left( {2x + 3} \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\because \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x} \right]$
$ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right] = \cos \left( {2x + 3} \right)\left( 2 \right)\,\,\,\,\,\,\,\,\left[ {\because \dfrac{d}{{dx}}\left( {2x} \right) = 2\left( 1 \right) = 2} \right]$
$ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right] = 2\cos \left( {2x + 3} \right)$ …. (4)
Substitute equation $ \left( 4 \right)$ in equation $ \left( 3 \right),$ we get
$ f'\left( x \right) = 2\sin \left( {2x + 3} \right)\left( {2\cos \left( {2x + 3} \right)} \right)$
Simplifying the equation,
$ f'\left( x \right) = 4\sin \left( {2x + 3} \right)\left( {\cos \left( {2x + 3} \right)} \right)$
Using $ \sin 2A = 2\sin A\cos A$
$ f'\left( x \right) = 2\sin 2\left( {2x + 3} \right)\,$
$ f'\left( x \right) = 2\sin \left( {4x + 6} \right)$
$ \dfrac{d}{{dx}}{\sin ^2}\left( {2x + 3} \right) = 2\sin \left( {4x + 6} \right)$
Using power rule and other differentiation rules we can get the required derivative of a function.
Thus, the derivative of $ {\sin ^2}\left( {2x + 3} \right)$ is $ 2\sin \left( {4x + 6} \right)$ .
Note: We can also solve this question by the following method
$ {\sin ^2}\left( {2x + 3} \right) = \sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right)$
By the differentiation rule
$ \dfrac{d}{{dx}}f\left( x \right)g\left( x \right) = f'\left( x \right)g\left( x \right) + f\left( x \right)g'\left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right)$
And by using the chain rule,
We differentiate the function respect to them
$ \dfrac{d}{{dx}}{\sin ^2}\left( {2x + 3} \right) = \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right)$
Here $ f\left( x \right) = \sin (2x + 3),g\left( x \right) = \sin \left( {2x + 3} \right)$
Substitute in equation $ \left( * \right)$
$ \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = \left[ {\dfrac{d}{{dx}}\sin \left( {2x + 3} \right)} \right]\sin \left( {2x + 3} \right) + \sin \left( {2x + 3} \right)\left[ {\dfrac{d}{{dx}}\sin \left( {2x + 3} \right)} \right]$
Using $ \dfrac{d}{{dx}}\sin x = \cos x\,,\,\dfrac{d}{{dx}}nx = n$ ,
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = \cos \left( {2x + 3} \right)\left( 2 \right)\sin \left( {2x + 3} \right) + \sin \left( {2x + 3} \right)\cos \left( {2x + 3} \right)\left( 2 \right)\,\,\,\,\,\,\,\,\,$
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = 4\cos \left( {2x + 3} \right)\sin \left( {2x + 3} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = 2\sin 2\left( {2x + 3} \right)\,\left[ {\because \sin 2A = 2\sin A\cos A} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = 2\sin \left( {4x + 6} \right)$
$ \Rightarrow \dfrac{d}{{dx}}{\sin ^2}\left( {2x + 3} \right) = 2\sin \left( {4x + 6} \right)$
Thus the derivative of $ {\sin ^2}\left( {2x + 3} \right)$ is $ 2\sin \left( {4x + 6} \right)$ .
The derivative of a function $ y = f\left( x \right)$ of a variable $ x$ is a measure of the rate at which the value of y of the function changes with respect to the change of the variable$ x$ . It is called the derivative of $ f$ with respect to$ x$ .
There are various methods to solve the derivative of the function.
Some of them are as follows,
The chain rule, the product rule, the quotient rule, implicit differentiation, derivative of trigonometric functions, derivative of exponential functions, derivative of logarithms.
We can easily find the derivative of a function, when we have known all the formulas of the differentiation.
We can solve the given function to find the derivative of the above given function by using differentiation rules. First let us denote the given function as $ f\left( x \right)$ and then rewrite the given function to derive it easier.
And then differentiate the given function by using power and other differentiation rules to get the result. You will also have to use chain rule to differentiate further.
Hence we can get the required derivative.
Complete step-by-step solution:
Let us take
$ f\left( x \right) = {\sin ^2}\left( {2x + 3} \right)\,$ …. (1)
The above equation can be written in the form as follows
$ f\left( x \right) = {\left( {\sin \left( {2x + 3} \right)} \right)^2}$ …. (2)
Now differentiating the above function we can get the result as follows,
$ f'\left( x \right) = 2\sin \left( {2x + 3} \right)\dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right]\,\,\,\,\,\,\left[ {\because \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}} \right]$ …. (3)
We can differentiate $ \left[ {\sin \left( {2x + 3} \right)} \right]$ directly in the above step, but we are going to differentiate it separately to make it easier and to avoid mistakes.
Now Consider, $ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right]$
Again differentiate we get,
$ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right] = \cos \left( {2x + 3} \right)\dfrac{d}{{dx}}\left[ {\left( {2x + 3} \right)} \right]\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\because \dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x} \right]$
$ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right] = \cos \left( {2x + 3} \right)\left( 2 \right)\,\,\,\,\,\,\,\,\left[ {\because \dfrac{d}{{dx}}\left( {2x} \right) = 2\left( 1 \right) = 2} \right]$
$ \dfrac{d}{{dx}}\left[ {\sin \left( {2x + 3} \right)} \right] = 2\cos \left( {2x + 3} \right)$ …. (4)
Substitute equation $ \left( 4 \right)$ in equation $ \left( 3 \right),$ we get
$ f'\left( x \right) = 2\sin \left( {2x + 3} \right)\left( {2\cos \left( {2x + 3} \right)} \right)$
Simplifying the equation,
$ f'\left( x \right) = 4\sin \left( {2x + 3} \right)\left( {\cos \left( {2x + 3} \right)} \right)$
Using $ \sin 2A = 2\sin A\cos A$
$ f'\left( x \right) = 2\sin 2\left( {2x + 3} \right)\,$
$ f'\left( x \right) = 2\sin \left( {4x + 6} \right)$
$ \dfrac{d}{{dx}}{\sin ^2}\left( {2x + 3} \right) = 2\sin \left( {4x + 6} \right)$
Using power rule and other differentiation rules we can get the required derivative of a function.
Thus, the derivative of $ {\sin ^2}\left( {2x + 3} \right)$ is $ 2\sin \left( {4x + 6} \right)$ .
Note: We can also solve this question by the following method
$ {\sin ^2}\left( {2x + 3} \right) = \sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right)$
By the differentiation rule
$ \dfrac{d}{{dx}}f\left( x \right)g\left( x \right) = f'\left( x \right)g\left( x \right) + f\left( x \right)g'\left( x \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( * \right)$
And by using the chain rule,
We differentiate the function respect to them
$ \dfrac{d}{{dx}}{\sin ^2}\left( {2x + 3} \right) = \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right)$
Here $ f\left( x \right) = \sin (2x + 3),g\left( x \right) = \sin \left( {2x + 3} \right)$
Substitute in equation $ \left( * \right)$
$ \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = \left[ {\dfrac{d}{{dx}}\sin \left( {2x + 3} \right)} \right]\sin \left( {2x + 3} \right) + \sin \left( {2x + 3} \right)\left[ {\dfrac{d}{{dx}}\sin \left( {2x + 3} \right)} \right]$
Using $ \dfrac{d}{{dx}}\sin x = \cos x\,,\,\dfrac{d}{{dx}}nx = n$ ,
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = \cos \left( {2x + 3} \right)\left( 2 \right)\sin \left( {2x + 3} \right) + \sin \left( {2x + 3} \right)\cos \left( {2x + 3} \right)\left( 2 \right)\,\,\,\,\,\,\,\,\,$
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = 4\cos \left( {2x + 3} \right)\sin \left( {2x + 3} \right)$
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = 2\sin 2\left( {2x + 3} \right)\,\left[ {\because \sin 2A = 2\sin A\cos A} \right]$
$ \Rightarrow \dfrac{d}{{dx}}\sin \left( {2x + 3} \right)\sin \left( {2x + 3} \right) = 2\sin \left( {4x + 6} \right)$
$ \Rightarrow \dfrac{d}{{dx}}{\sin ^2}\left( {2x + 3} \right) = 2\sin \left( {4x + 6} \right)$
Thus the derivative of $ {\sin ^2}\left( {2x + 3} \right)$ is $ 2\sin \left( {4x + 6} \right)$ .
The derivative of a function $ y = f\left( x \right)$ of a variable $ x$ is a measure of the rate at which the value of y of the function changes with respect to the change of the variable$ x$ . It is called the derivative of $ f$ with respect to$ x$ .
There are various methods to solve the derivative of the function.
Some of them are as follows,
The chain rule, the product rule, the quotient rule, implicit differentiation, derivative of trigonometric functions, derivative of exponential functions, derivative of logarithms.
We can easily find the derivative of a function, when we have known all the formulas of the differentiation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

