
How do you find the derivative of $\dfrac{x}{{{x^2} - 4}}$ ?
Answer
539.1k+ views
Hint: We can find the derivative of the given expression simply by applying the Quotient Rule of Derivative and simplifying it further.
Formula used:
Quotient Rule: $y' = \dfrac{{g(x) \times f'(x) - f(x) \times g'(x)}}{{{{(g(x))}^2}}}$
Complete step by step answer:
We will find the derivative of the given expression using Quotient Rule:
Explaining Quotient Rule:
Suppose we have:
$ \Rightarrow y = \dfrac{{f(x)}}{{g(x)}}$
Then, using the Quotient Rule:
$ \Rightarrow y' = \dfrac{{g(x)f'(x) - f(x) \times g'(x)}}{{{{\left( {g\left( x \right)} \right)}^2}}}$
In simple words, you take the derivative of f(x) multiplied by g(x), subtract f(x) multiplied by the derivative of g(x) and divide all that by ${\left( {g\left( x \right)} \right)^2}$.
Start by rewriting the expression:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right)$
Simplify by using Quotient Rule explained above:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {\left( {{x^2} - 4} \right)\left( 1 \right)} \right) - \left( {\left( x \right)\left( {2x} \right)} \right)}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
Simplify:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {\left( {{x^2} - 4} \right)\left( 1 \right)} \right) - \left( {\left( x \right)\left( {2x} \right)} \right)}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {{x^2} - 4} \right) - 2{x^2}}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
So the derivative of $\dfrac{x}{{{x^2} - 4}}$ is $ - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$.
Note: The alternative method to find the derivative is by using product, power and chain rule.
Explanation:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right)$
Solve by taking the inverse of the denominator:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{d}{{dx}}x{\left( {{x^2} - 4} \right)^{ - 1}}$
Simplify using Product Rule:
Explaining Product rule:
Suppose we have:
$ \Rightarrow y = f(x) \times g(x)$
Then, using the Product rule:
$ \Rightarrow y' = f(x) \times g'(x) + f'(x) \times g(x)$
In simple words, keep the first term as it is and differentiate the second term, then differentiate the first term and keep the second term as it is or vice-versa.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \left( {\dfrac{d}{{dx}}x} \right){\left( {{x^2} - 4} \right)^{ - 1}} + x\left( {\dfrac{d}{{dx}}{{\left( {{x^2} - 4} \right)}^{ - 1}}} \right)$
After derivation, we get
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = {\left( {{x^2} - 4} \right)^{ - 1}} - 2{x^2}{\left( {{x^2} - 4} \right)^{ - 2}}$
Now, using Power Rule and Chain Rule to simplify the above expression:
Explaining Power rule:
Suppose we have:
$ \Rightarrow y = a{x^n}$
Then using Power rule:
$ \Rightarrow y' = (a \times n){x^{n - 1}}$
In simple words, multiply the variable’s exponent n, by its coefficient a, then subtract 1 from the exponent. If there’s no coefficient (the coefficient is 1), then the exponent will become the new coefficient.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {{x^2} - 4} \right) - 2{x^2}}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
Simplify:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
So the derivative of $\dfrac{x}{{{x^2} - 4}}$ is $ - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$.
We will get the same result with both the methods but this method is quite long.
Formula used:
Quotient Rule: $y' = \dfrac{{g(x) \times f'(x) - f(x) \times g'(x)}}{{{{(g(x))}^2}}}$
Complete step by step answer:
We will find the derivative of the given expression using Quotient Rule:
Explaining Quotient Rule:
Suppose we have:
$ \Rightarrow y = \dfrac{{f(x)}}{{g(x)}}$
Then, using the Quotient Rule:
$ \Rightarrow y' = \dfrac{{g(x)f'(x) - f(x) \times g'(x)}}{{{{\left( {g\left( x \right)} \right)}^2}}}$
In simple words, you take the derivative of f(x) multiplied by g(x), subtract f(x) multiplied by the derivative of g(x) and divide all that by ${\left( {g\left( x \right)} \right)^2}$.
Start by rewriting the expression:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right)$
Simplify by using Quotient Rule explained above:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {\left( {{x^2} - 4} \right)\left( 1 \right)} \right) - \left( {\left( x \right)\left( {2x} \right)} \right)}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
Simplify:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {\left( {{x^2} - 4} \right)\left( 1 \right)} \right) - \left( {\left( x \right)\left( {2x} \right)} \right)}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {{x^2} - 4} \right) - 2{x^2}}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
So the derivative of $\dfrac{x}{{{x^2} - 4}}$ is $ - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$.
Note: The alternative method to find the derivative is by using product, power and chain rule.
Explanation:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right)$
Solve by taking the inverse of the denominator:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{d}{{dx}}x{\left( {{x^2} - 4} \right)^{ - 1}}$
Simplify using Product Rule:
Explaining Product rule:
Suppose we have:
$ \Rightarrow y = f(x) \times g(x)$
Then, using the Product rule:
$ \Rightarrow y' = f(x) \times g'(x) + f'(x) \times g(x)$
In simple words, keep the first term as it is and differentiate the second term, then differentiate the first term and keep the second term as it is or vice-versa.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \left( {\dfrac{d}{{dx}}x} \right){\left( {{x^2} - 4} \right)^{ - 1}} + x\left( {\dfrac{d}{{dx}}{{\left( {{x^2} - 4} \right)}^{ - 1}}} \right)$
After derivation, we get
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = {\left( {{x^2} - 4} \right)^{ - 1}} - 2{x^2}{\left( {{x^2} - 4} \right)^{ - 2}}$
Now, using Power Rule and Chain Rule to simplify the above expression:
Explaining Power rule:
Suppose we have:
$ \Rightarrow y = a{x^n}$
Then using Power rule:
$ \Rightarrow y' = (a \times n){x^{n - 1}}$
In simple words, multiply the variable’s exponent n, by its coefficient a, then subtract 1 from the exponent. If there’s no coefficient (the coefficient is 1), then the exponent will become the new coefficient.
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = \dfrac{{\left( {{x^2} - 4} \right) - 2{x^2}}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
Simplify:
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{x}{{{x^2} - 4}}} \right) = - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$
So the derivative of $\dfrac{x}{{{x^2} - 4}}$ is $ - \dfrac{{{x^2} + 4}}{{{{\left( {{x^2} - 4} \right)}^2}}}$.
We will get the same result with both the methods but this method is quite long.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

