Answer
Verified
425.1k+ views
Hint: Derivative of a function is the rate of change in the function with respect to the independent variable (x). First try to simplify the given function. Then use the properties of differentiation and differentiate the function.
Complete step-by-step solution:
Function is simply a quantity or a variable that depends on another quantity or variable. In the given equation y is a function that is depending on the variable x.
Let us now understand what is meant by the derivative of a function.
Derivative of a function is the rate of change in the function with respect to the independent variable (x). In other words, it is the rate at which the function y changes when the value of x is changed.
The derivative of y with respect to x is denoted as $ \dfrac{d}{dx}(y) $ , where $ y=f(x) $ .
We also called this as differentiation of x with respect to x.
i.e. $ \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{\sec x+\text{cosec }x}{\text{cosec }x} \right) $ …. (i)
Before differentiating let us first simplify the given equation.
We can write the equation as $ \dfrac{\sec x+\text{cosec }x}{\text{cosec }x}=\dfrac{\sec x}{\text{cosec }x}+1 $ .
And we know that $ \dfrac{\sec x}{\text{cosec }x}=\tan x $
Therefore, we can write that $ \dfrac{\sec x+\text{cosec }x}{\text{cosec }x}=\tan x+1 $
With this, equation (i) changes to $ \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \tan x+1 \right) $
Since differentiation has associative property, $ \dfrac{d}{dx}\left( \tan x+1 \right)=\dfrac{d}{dx}(\tan x)+\dfrac{d}{dx}(1) $
But we know that differentiation of a constant term is zero. Therefore, $ \dfrac{d}{dx}(1) $ .
And $ \dfrac{d}{dx}(\tan x)={{\sec }^{2}}x $ .
Therefore, we get that $ \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \tan x+1 \right)={{\sec }^{2}}x $ .
Hence, we found the first derivative of the given function.
Note: Whenever the question is asked to find the derivative of function involving trigonometric functions, first simply the complex function in the terms of sine, cosine and tangent function as we know the derivatives of these functions. We can find the derivative of the given function using quotient rule but it will be a longer process.
Complete step-by-step solution:
Function is simply a quantity or a variable that depends on another quantity or variable. In the given equation y is a function that is depending on the variable x.
Let us now understand what is meant by the derivative of a function.
Derivative of a function is the rate of change in the function with respect to the independent variable (x). In other words, it is the rate at which the function y changes when the value of x is changed.
The derivative of y with respect to x is denoted as $ \dfrac{d}{dx}(y) $ , where $ y=f(x) $ .
We also called this as differentiation of x with respect to x.
i.e. $ \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{\sec x+\text{cosec }x}{\text{cosec }x} \right) $ …. (i)
Before differentiating let us first simplify the given equation.
We can write the equation as $ \dfrac{\sec x+\text{cosec }x}{\text{cosec }x}=\dfrac{\sec x}{\text{cosec }x}+1 $ .
And we know that $ \dfrac{\sec x}{\text{cosec }x}=\tan x $
Therefore, we can write that $ \dfrac{\sec x+\text{cosec }x}{\text{cosec }x}=\tan x+1 $
With this, equation (i) changes to $ \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \tan x+1 \right) $
Since differentiation has associative property, $ \dfrac{d}{dx}\left( \tan x+1 \right)=\dfrac{d}{dx}(\tan x)+\dfrac{d}{dx}(1) $
But we know that differentiation of a constant term is zero. Therefore, $ \dfrac{d}{dx}(1) $ .
And $ \dfrac{d}{dx}(\tan x)={{\sec }^{2}}x $ .
Therefore, we get that $ \dfrac{dy}{dx}=\dfrac{d}{dx}\left( \tan x+1 \right)={{\sec }^{2}}x $ .
Hence, we found the first derivative of the given function.
Note: Whenever the question is asked to find the derivative of function involving trigonometric functions, first simply the complex function in the terms of sine, cosine and tangent function as we know the derivatives of these functions. We can find the derivative of the given function using quotient rule but it will be a longer process.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE