
How do you find the derivative of $\dfrac{1}{{\log x}}$?
Answer
564.3k+ views
Hint: Here we will rearrange the given expression and use the chain rule to find the derivative of the equation. On doing some simplification we get the required answer.
Formula used: $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
Complete step-by-step solution:
We have the given equation as:
\[ \Rightarrow \dfrac{d}{{dx}}\dfrac{1}{{\log x}}\]
Now since the term $\log x$ is in the denominator of the equation, we can write the term in the numerator in the inverse format as:
$ \Rightarrow \dfrac{d}{{dx}}{(\log x)^{ - 1}}$
Now since there is no direct formula for calculating the derivative of the given expression, we will use the chain rule by writing the term as:
$ \Rightarrow \dfrac{d}{{dx}}{(\log x)^{ - 1}}$
Now we know that the formula for the chain rule is: $F'(x) = f'(g(x))g'(x)$
Since we have to use the chain rule on the given expression, we will write it as:
$ \Rightarrow \dfrac{d}{{dx}}\left( {{{(\log x)}^{ - 1}}\dfrac{d}{{dx}}(\log x)} \right)$
On derivative we get,
$ \Rightarrow - 1 \times {(\log x)^{ - 2}} \times \dfrac{d}{{dx}}(\log x)$
Since the term in the above equation is in the form of negative power, we can invert and write it as:
$ \Rightarrow - 1 \times \dfrac{1}{{{{(\log x)}^2}}} \times \dfrac{d}{{dx}}(\log x)$
Now we know that $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
We can write the above expression as:
$ \Rightarrow - 1 \times \dfrac{1}{{{{(\log x)}^2}}} \times \dfrac{1}{x}$
On simplifying and writing the equation we get:
$ \Rightarrow \dfrac{{ - 1}}{{x{{(\log x)}^2}}}$
Therefore\[ \Rightarrow \dfrac{d}{{dx}}\dfrac{1}{{\log x}} = \dfrac{{ - 1}}{{x{{(\log x)}^2}}}\].
Note: For these types of questions the formulas for the derivatives of the terms should be remembered.
It is to be remembered that the inverse of the number, also called the reciprocal of the number is the number diving $1$, for example the reciprocal of $a$ is $\dfrac{1}{a}$, and it can also be expressed in terms of power as ${a^{ - 1}}$.
The inverse of the derivative is the integration and vice versa. If the derivative of a term $a$ is $b$, then the integration of the term $b$ will be $a$.
Formula used: $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$
Complete step-by-step solution:
We have the given equation as:
\[ \Rightarrow \dfrac{d}{{dx}}\dfrac{1}{{\log x}}\]
Now since the term $\log x$ is in the denominator of the equation, we can write the term in the numerator in the inverse format as:
$ \Rightarrow \dfrac{d}{{dx}}{(\log x)^{ - 1}}$
Now since there is no direct formula for calculating the derivative of the given expression, we will use the chain rule by writing the term as:
$ \Rightarrow \dfrac{d}{{dx}}{(\log x)^{ - 1}}$
Now we know that the formula for the chain rule is: $F'(x) = f'(g(x))g'(x)$
Since we have to use the chain rule on the given expression, we will write it as:
$ \Rightarrow \dfrac{d}{{dx}}\left( {{{(\log x)}^{ - 1}}\dfrac{d}{{dx}}(\log x)} \right)$
On derivative we get,
$ \Rightarrow - 1 \times {(\log x)^{ - 2}} \times \dfrac{d}{{dx}}(\log x)$
Since the term in the above equation is in the form of negative power, we can invert and write it as:
$ \Rightarrow - 1 \times \dfrac{1}{{{{(\log x)}^2}}} \times \dfrac{d}{{dx}}(\log x)$
Now we know that $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
We can write the above expression as:
$ \Rightarrow - 1 \times \dfrac{1}{{{{(\log x)}^2}}} \times \dfrac{1}{x}$
On simplifying and writing the equation we get:
$ \Rightarrow \dfrac{{ - 1}}{{x{{(\log x)}^2}}}$
Therefore\[ \Rightarrow \dfrac{d}{{dx}}\dfrac{1}{{\log x}} = \dfrac{{ - 1}}{{x{{(\log x)}^2}}}\].
Note: For these types of questions the formulas for the derivatives of the terms should be remembered.
It is to be remembered that the inverse of the number, also called the reciprocal of the number is the number diving $1$, for example the reciprocal of $a$ is $\dfrac{1}{a}$, and it can also be expressed in terms of power as ${a^{ - 1}}$.
The inverse of the derivative is the integration and vice versa. If the derivative of a term $a$ is $b$, then the integration of the term $b$ will be $a$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

