
Find the derivative of $\cos e{c^2}x$, by using the first principal of derivatives?
Answer
582.9k+ views
Hint: In this particular type of question use the concept that to find the differentiation by first principle derivatives the formula is given as \[\dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\] and later on use the concept that $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$ so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation:
$\cos e{c^2}x$
Let,
$ \Rightarrow f\left( x \right) = \cos e{c^2}x$............... (1)
Now we have to find its derivation using first principal of derivatives,
So according to first principal the derivative of function f(x) is given as,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]............... (2)
So from equation (1) value of f (x + h) = $\cos e{c^2}\left( {x + h} \right)$............... (3)
Now substitute the value from equation (1) and (3) in equation (2) we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos e{c^2}\left( {x + h} \right) - \cos e{c^2}x}}{h}\]
Now as we know that cosec x = (1/sin x) so use this property in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}\left( {x + h} \right)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h}\]
Now simplify this we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}x - {{\sin }^2}\left( {x + h} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now use the property that $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$ in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sin x - \sin \left( {x + h} \right)} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now as we know that $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$ so use this property in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2\sin \dfrac{{x - x - h}}{2}\cos \dfrac{{x + x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now simplify it we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2\sin \dfrac{{ - h}}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now as we know that sin (-x) = -sin x so we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {2\sin \dfrac{h}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now multiply and divide by 2 in denominator h term so we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {2\sin \dfrac{h}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{2\left( {\dfrac{h}{2}} \right){{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} - \left( {\dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}} \right)\dfrac{{\left( {\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now as we know that \[\mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}} \right) = 1\], so use this property in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} - \dfrac{{\left( {\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now apply the limit i.e. substitute h = 0 we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{\left( {\cos x} \right)\left( {\sin x + \sin x} \right)}}{{{{\sin }^2}x{{\sin }^2}x}}\]
Now simplify this we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{2\left( {\cos x} \right)\left( {\sin x} \right)}}{{{{\sin }^2}x{{\sin }^2}x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{2\left( {\cos x} \right)}}{{{{\sin }^2}x\sin x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - 2\cos e{c^2}x\cot x\], $\left[ {\because \dfrac{{\cos x}}{{\sin x}} = \cot x,\dfrac{1}{{{{\sin }^2}x}} = \cos e{c^2}x} \right]$
So this is the required differentiation of \[\cos e{c^2}x\] using the first principle of derivatives.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of first derivative which is stated above, also remember that $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$ and the basic trigonometric identity such as $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$ to get the required solution as above.
Complete step-by-step answer:
Given equation:
$\cos e{c^2}x$
Let,
$ \Rightarrow f\left( x \right) = \cos e{c^2}x$............... (1)
Now we have to find its derivation using first principal of derivatives,
So according to first principal the derivative of function f(x) is given as,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]............... (2)
So from equation (1) value of f (x + h) = $\cos e{c^2}\left( {x + h} \right)$............... (3)
Now substitute the value from equation (1) and (3) in equation (2) we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos e{c^2}\left( {x + h} \right) - \cos e{c^2}x}}{h}\]
Now as we know that cosec x = (1/sin x) so use this property in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{1}{{{{\sin }^2}\left( {x + h} \right)}} - \dfrac{1}{{{{\sin }^2}x}}}}{h}\]
Now simplify this we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{{\sin }^2}x - {{\sin }^2}\left( {x + h} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now use the property that $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$ in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {\sin x - \sin \left( {x + h} \right)} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now as we know that $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$ so use this property in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2\sin \dfrac{{x - x - h}}{2}\cos \dfrac{{x + x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now simplify it we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {2\sin \dfrac{{ - h}}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now as we know that sin (-x) = -sin x so we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {2\sin \dfrac{h}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{h{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now multiply and divide by 2 in denominator h term so we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \left( {2\sin \dfrac{h}{2}\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{2\left( {\dfrac{h}{2}} \right){{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} - \left( {\dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}} \right)\dfrac{{\left( {\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now as we know that \[\mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{\sin \dfrac{h}{2}}}{{\dfrac{h}{2}}}} \right) = 1\], so use this property in the above equation we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} - \dfrac{{\left( {\cos \dfrac{{2x + h}}{2}} \right)\left( {\sin x + \sin \left( {x + h} \right)} \right)}}{{{{\sin }^2}\left( {x + h} \right){{\sin }^2}x}}\]
Now apply the limit i.e. substitute h = 0 we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{\left( {\cos x} \right)\left( {\sin x + \sin x} \right)}}{{{{\sin }^2}x{{\sin }^2}x}}\]
Now simplify this we have,
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{2\left( {\cos x} \right)\left( {\sin x} \right)}}{{{{\sin }^2}x{{\sin }^2}x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - \dfrac{{2\left( {\cos x} \right)}}{{{{\sin }^2}x\sin x}}\]
\[ \Rightarrow \dfrac{d}{{dx}}f\left( x \right) = f'\left( x \right) = - 2\cos e{c^2}x\cot x\], $\left[ {\because \dfrac{{\cos x}}{{\sin x}} = \cot x,\dfrac{1}{{{{\sin }^2}x}} = \cos e{c^2}x} \right]$
So this is the required differentiation of \[\cos e{c^2}x\] using the first principle of derivatives.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the formula of first derivative which is stated above, also remember that $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$ and the basic trigonometric identity such as $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$ to get the required solution as above.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

