
How do you find the derivative of ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$?
Answer
532.8k+ views
Hint: In this question we have to find the derivative of the given inverse function, first assume the given function as a variable, and then apply the cos to both sides, and then derive both sides of the equation we will get an expression in terms of $\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right)$, now using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, let’s assume here as, $x = {\cos ^{ - 1}}\dfrac{x}{2}$, then simplify the expression and to get the value of $\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right)$and then by substituting the value in the first expression and then further simplification we will get the required result.
Complete step by step solution:
Given function is ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$,
Now let’s assume the given function as $y$,
$ \Rightarrow y = {\cos ^{ - 1}}\dfrac{x}{2}$,
Now apply cos on both sides we get,
$ \Rightarrow \cos y = \cos \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right)$,
Now simplifying we get,
$ \Rightarrow \cos y = \dfrac{x}{2}$,
Now differentiate in both sides of the equation we get,
$ \Rightarrow \dfrac{d}{{dx}}\cos y = \dfrac{d}{{dx}}\dfrac{x}{2}$,
Now simplifying we get,
$ \Rightarrow - \sin y\dfrac{{dy}}{{dx}} = \dfrac{1}{2}$ ,
Now taking sin y to the right hand side we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{2}\dfrac{1}{{\sin y}}$,
Now we know that $y = {\cos ^{ - 1}}\dfrac{x}{2}$, then the equation becomes,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{2\sin \left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)}}$,-----(1),
Now from the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, let’s assume here as, $x = {\cos ^{ - 1}}\dfrac{x}{2}$, then the identity becomes,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + {\cos ^2}\left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) = 1$,
Now rewrite the expression as,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + {\left( {\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)} \right)^2} = 1$,
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$ the identity becomes,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + \dfrac{{{x^2}}}{4} = 1$,
Now simplifying we get,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = 1 - \dfrac{{{x^2}}}{4}$,
Now taking out the square root we get,
$\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \sqrt {1 - \dfrac{{{x^2}}}{4}} $,
Now simplifying we get,
$\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \sqrt {\dfrac{{4 - {x^2}}}{4}} $,
Now again simplifying we get,
$ \Rightarrow \sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \dfrac{1}{2}\sqrt {4 - {x^2}} $,
Now substituting the value in (1) we get,
$\dfrac{d}{{dx}}{\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{{ - 1}}{{2\dfrac{1}{2}\sqrt {4 - {x^2}} }}$,
Now simplifying we get,
$\dfrac{d}{{dx}}{\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
So, the derivative of the given function is $\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
Final Answer:
$\therefore $ The derivative of the given function ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$ will be equal to $\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
Note:
Another method of solving the question is by directly using the derivative of inverse trigonometric functions the formula which is given by $\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$,
Now given function is ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$,
Now here $x = \dfrac{x}{2}$, by substitute the value in the formula we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }}\dfrac{d}{{dx}}\dfrac{x}{2}$,
Now simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {\dfrac{{4 - {x^2}}}{4}} }}\dfrac{1}{2}$,
Now simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 2}}{{\sqrt {4 - {x^2}} }}\dfrac{1}{2}$,
Now further simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$,
So, we got the same derivative value i.e., $\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
Complete step by step solution:
Given function is ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$,
Now let’s assume the given function as $y$,
$ \Rightarrow y = {\cos ^{ - 1}}\dfrac{x}{2}$,
Now apply cos on both sides we get,
$ \Rightarrow \cos y = \cos \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right)$,
Now simplifying we get,
$ \Rightarrow \cos y = \dfrac{x}{2}$,
Now differentiate in both sides of the equation we get,
$ \Rightarrow \dfrac{d}{{dx}}\cos y = \dfrac{d}{{dx}}\dfrac{x}{2}$,
Now simplifying we get,
$ \Rightarrow - \sin y\dfrac{{dy}}{{dx}} = \dfrac{1}{2}$ ,
Now taking sin y to the right hand side we get,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{1}{2}\dfrac{1}{{\sin y}}$,
Now we know that $y = {\cos ^{ - 1}}\dfrac{x}{2}$, then the equation becomes,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{2\sin \left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)}}$,-----(1),
Now from the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, let’s assume here as, $x = {\cos ^{ - 1}}\dfrac{x}{2}$, then the identity becomes,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + {\cos ^2}\left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right) = 1$,
Now rewrite the expression as,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + {\left( {\cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{x}{2}} \right)} \right)} \right)^2} = 1$,
Now we know that $\cos \left( {{{\cos }^{ - 1}}x} \right) = x$ the identity becomes,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) + \dfrac{{{x^2}}}{4} = 1$,
Now simplifying we get,
$ \Rightarrow {\sin ^2}\left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = 1 - \dfrac{{{x^2}}}{4}$,
Now taking out the square root we get,
$\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \sqrt {1 - \dfrac{{{x^2}}}{4}} $,
Now simplifying we get,
$\sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \sqrt {\dfrac{{4 - {x^2}}}{4}} $,
Now again simplifying we get,
$ \Rightarrow \sin \left( {{{\cos }^{ - 1}}\dfrac{x}{2}} \right) = \dfrac{1}{2}\sqrt {4 - {x^2}} $,
Now substituting the value in (1) we get,
$\dfrac{d}{{dx}}{\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{{ - 1}}{{2\dfrac{1}{2}\sqrt {4 - {x^2}} }}$,
Now simplifying we get,
$\dfrac{d}{{dx}}{\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
So, the derivative of the given function is $\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
Final Answer:
$\therefore $ The derivative of the given function ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$ will be equal to $\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
Note:
Another method of solving the question is by directly using the derivative of inverse trigonometric functions the formula which is given by $\dfrac{d}{{dx}}{\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$,
Now given function is ${\cos ^{ - 1}}\left( {\dfrac{x}{2}} \right)$,
Now here $x = \dfrac{x}{2}$, by substitute the value in the formula we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {1 - \dfrac{{{x^2}}}{4}} }}\dfrac{d}{{dx}}\dfrac{x}{2}$,
Now simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {\dfrac{{4 - {x^2}}}{4}} }}\dfrac{1}{2}$,
Now simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 2}}{{\sqrt {4 - {x^2}} }}\dfrac{1}{2}$,
Now further simplifying we get,
$ \Rightarrow \dfrac{d}{{dx}}{\cos ^{ - 1}}\dfrac{x}{2} = \dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$,
So, we got the same derivative value i.e., $\dfrac{{ - 1}}{{\sqrt {4 - {x^2}} }}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

