
How do I find the derivative of a function at a given point?
Answer
541.2k+ views
Hint: Here we just need to differentiate the given function with respect to the variable which the function contains and then we just need to put the value of the variable at which we need to find the derivative. If we find the differentiation as $f'\left( x \right)$ then at $x = a$ derivative will be $f'\left( a \right)$.
Complete step by step solution:
Here we are given to find the derivative of any function at a given point. Here we must know how the differentiation of any function is carried out. This can be made clearer with an example:
If we have the function $f\left( x \right) = 3{x^2}$ then we know that differentiation of any function of the form ${a^n}{\text{ is }}n{a^{n - 1}}$.
So we can say that $f'\left( x \right) = 6x$ and now if we are given that we need to find the derivative at $x = 2$ then we just need to put the value of $x$ in the derivative of the function which is obtained. So we will get $f'\left( 2 \right) = \left( 6 \right)\left( 2 \right) = 12$.
Another example can be taken as $f\left( x \right) = 6{x^3} + 7x$
Differentiating it with respect with $x$ we get:
$f'\left( x \right) = 18{x^2} + 7$
If we need to find the differentiation or derivative at $x = 1$ then we will get that the derivative will be equal to:
$f'\left( 1 \right) = 18{\left( 1 \right)^2} + 7 = 18 + 7 = 25$.
Hence in this way we just need to find the derivative at any point of the function we are given.
Note:
Here in the similar way we can find the double derivative of any function also. If we are given the derivative as $f'\left( x \right) = 18{x^2} + 7$ then again we can differentiate and get $f''\left( x \right) = 36x$ and now at $x = 1$ derivative will be $f''\left( 1 \right) = 36\left( 1 \right) = 36$.
Complete step by step solution:
Here we are given to find the derivative of any function at a given point. Here we must know how the differentiation of any function is carried out. This can be made clearer with an example:
If we have the function $f\left( x \right) = 3{x^2}$ then we know that differentiation of any function of the form ${a^n}{\text{ is }}n{a^{n - 1}}$.
So we can say that $f'\left( x \right) = 6x$ and now if we are given that we need to find the derivative at $x = 2$ then we just need to put the value of $x$ in the derivative of the function which is obtained. So we will get $f'\left( 2 \right) = \left( 6 \right)\left( 2 \right) = 12$.
Another example can be taken as $f\left( x \right) = 6{x^3} + 7x$
Differentiating it with respect with $x$ we get:
$f'\left( x \right) = 18{x^2} + 7$
If we need to find the differentiation or derivative at $x = 1$ then we will get that the derivative will be equal to:
$f'\left( 1 \right) = 18{\left( 1 \right)^2} + 7 = 18 + 7 = 25$.
Hence in this way we just need to find the derivative at any point of the function we are given.
Note:
Here in the similar way we can find the double derivative of any function also. If we are given the derivative as $f'\left( x \right) = 18{x^2} + 7$ then again we can differentiate and get $f''\left( x \right) = 36x$ and now at $x = 1$ derivative will be $f''\left( 1 \right) = 36\left( 1 \right) = 36$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

