
How do you find the derivative of ${4^{6x}}$?
Answer
553.5k+ views
Hint: Differentiation is one of the two important concepts apart from integration. Differentiation is a method of finding the derivative of a function. Differentiation is a process, in Maths, where we find the instantaneous rate of change in function based on one of its variables. The most common example is the rate change of displacement with respect to time, called velocity. The opposite of finding a derivative is anti-differentiation.
If x is a variable and y is another variable, then the rate of change of x with respect to y is given by $\dfrac{{dy}}{{dx}}$. This is the general expression of derivative of a function and is represented as $f(x) = \dfrac{{dy}}{{dx}}$, where$y = f(x)$ is any function.
Complete step by step answer:
We can rewrite ${4^{6x}}$as ${({4^6})^x}$
Now, recall $\dfrac{d}{{dx}}{a^x}$ where a is a constant is given by ${a^x}ln(a)$.
Thus,
$ \Rightarrow \dfrac{d}{{dx}}{4^{6x}} = {4^{(6x)}}ln({4^6}) = 6ln(4){4^{(6x)}}$
Note: Functions are usually categorized under calculus in two categories, namely:
1) Linear functions.
2) Non-linear functions.
A linear function varies by its domain at a constant rate. Therefore, the overall rate of feature shift is the same as the level of function change in any situation.
Nevertheless, in the case of non-linear processes, the rate of change ranges from point to point. The variation's existence is dependent on the function's design.
The frequency of function change at a given point is known as a derivative of that function.
If x is a variable and y is another variable, then the rate of change of x with respect to y is given by $\dfrac{{dy}}{{dx}}$. This is the general expression of derivative of a function and is represented as $f(x) = \dfrac{{dy}}{{dx}}$, where$y = f(x)$ is any function.
Complete step by step answer:
We can rewrite ${4^{6x}}$as ${({4^6})^x}$
Now, recall $\dfrac{d}{{dx}}{a^x}$ where a is a constant is given by ${a^x}ln(a)$.
Thus,
$ \Rightarrow \dfrac{d}{{dx}}{4^{6x}} = {4^{(6x)}}ln({4^6}) = 6ln(4){4^{(6x)}}$
Note: Functions are usually categorized under calculus in two categories, namely:
1) Linear functions.
2) Non-linear functions.
A linear function varies by its domain at a constant rate. Therefore, the overall rate of feature shift is the same as the level of function change in any situation.
Nevertheless, in the case of non-linear processes, the rate of change ranges from point to point. The variation's existence is dependent on the function's design.
The frequency of function change at a given point is known as a derivative of that function.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

