
How do you find the derivative of $-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$?
Answer
542.7k+ views
Hint: We first define the multiplication rule and how the differentiation of function works. We take addition of these two different differentiated values. We take the $\dfrac{dy}{dx}$ altogether. We keep one function and differentiate the other one and then do the same thing with the other function. Then we take the addition to complete the formula.
Complete step by step solution:
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)=-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$. We assume the functions where \[u\left( x \right)=-2x,v\left( x \right)={{\left( {{x}^{2}}+3 \right)}^{-2}}\]
We know that differentiation of \[u\left( x \right)=-2x\] is ${{u}^{'}}\left( x \right)=-2$.
Now we use chain rule for the differentiation of \[v\left( x \right)={{\left( {{x}^{2}}+3 \right)}^{-2}}\] .
We use the rule of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
We get \[{{v}^{'}}\left( x \right)=\left[ \left( -2 \right){{\left( {{x}^{2}}+3 \right)}^{-3}} \right]\times \left( 2x \right)=-4x{{\left( {{x}^{2}}+3 \right)}^{-3}}\].
We now take differentiation on both parts of $f\left( x \right)=-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -2x{{\left( {{x}^{2}}+3 \right)}^{-2}} \right]\]
We place the values of ${{u}^{'}}\left( x \right)=-2$ and \[{{v}^{'}}\left( x \right)=-4x{{\left( {{x}^{2}}+3 \right)}^{-3}}\] to get
\[\dfrac{d}{dx}\left[ -2x{{\left( {{x}^{2}}+3 \right)}^{-2}} \right]=\left( -2x \right)\dfrac{d}{dx}\left[ {{\left( {{x}^{2}}+3 \right)}^{-2}} \right]+\left[ {{\left( {{x}^{2}}+3 \right)}^{-2}} \right]\dfrac{d}{dx}\left( -2x \right)\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -2x{{\left( {{x}^{2}}+3 \right)}^{-2}} \right] \\
& \Rightarrow {{f}^{'}}\left( x \right)=\left( -2x \right)\left[ -4x{{\left( {{x}^{2}}+3 \right)}^{-3}} \right]+\left[ {{\left( {{x}^{2}}+3 \right)}^{-2}} \right]\left( -2 \right) \\
& \Rightarrow {{f}^{'}}\left( x \right)=2{{\left( {{x}^{2}}+3 \right)}^{-2}}\left( \dfrac{4{{x}^{2}}}{{{x}^{2}}+3}-1 \right) \\
\end{align}\]
Therefore, differentiation of $-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$ is \[2{{\left( {{x}^{2}}+3 \right)}^{-2}}\left( \dfrac{4{{x}^{2}}}{{{x}^{2}}+3}-1 \right)\].
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.
Complete step by step solution:
We now discuss the multiplication process of two functions where \[f\left( x \right)=u\left( x \right)v\left( x \right)\]
Differentiating \[f\left( x \right)=uv\], we get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\].
The above-mentioned rule is the multiplication rule. We apply that on $f\left( x \right)=-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$. We assume the functions where \[u\left( x \right)=-2x,v\left( x \right)={{\left( {{x}^{2}}+3 \right)}^{-2}}\]
We know that differentiation of \[u\left( x \right)=-2x\] is ${{u}^{'}}\left( x \right)=-2$.
Now we use chain rule for the differentiation of \[v\left( x \right)={{\left( {{x}^{2}}+3 \right)}^{-2}}\] .
We use the rule of \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\].
We get \[{{v}^{'}}\left( x \right)=\left[ \left( -2 \right){{\left( {{x}^{2}}+3 \right)}^{-3}} \right]\times \left( 2x \right)=-4x{{\left( {{x}^{2}}+3 \right)}^{-3}}\].
We now take differentiation on both parts of $f\left( x \right)=-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$ and get \[\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -2x{{\left( {{x}^{2}}+3 \right)}^{-2}} \right]\]
We place the values of ${{u}^{'}}\left( x \right)=-2$ and \[{{v}^{'}}\left( x \right)=-4x{{\left( {{x}^{2}}+3 \right)}^{-3}}\] to get
\[\dfrac{d}{dx}\left[ -2x{{\left( {{x}^{2}}+3 \right)}^{-2}} \right]=\left( -2x \right)\dfrac{d}{dx}\left[ {{\left( {{x}^{2}}+3 \right)}^{-2}} \right]+\left[ {{\left( {{x}^{2}}+3 \right)}^{-2}} \right]\dfrac{d}{dx}\left( -2x \right)\].
We take all the $\dfrac{dy}{dx}$ forms altogether to get
\[\begin{align}
& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ -2x{{\left( {{x}^{2}}+3 \right)}^{-2}} \right] \\
& \Rightarrow {{f}^{'}}\left( x \right)=\left( -2x \right)\left[ -4x{{\left( {{x}^{2}}+3 \right)}^{-3}} \right]+\left[ {{\left( {{x}^{2}}+3 \right)}^{-2}} \right]\left( -2 \right) \\
& \Rightarrow {{f}^{'}}\left( x \right)=2{{\left( {{x}^{2}}+3 \right)}^{-2}}\left( \dfrac{4{{x}^{2}}}{{{x}^{2}}+3}-1 \right) \\
\end{align}\]
Therefore, differentiation of $-2x{{\left( {{x}^{2}}+3 \right)}^{-2}}$ is \[2{{\left( {{x}^{2}}+3 \right)}^{-2}}\left( \dfrac{4{{x}^{2}}}{{{x}^{2}}+3}-1 \right)\].
Note: We need remember that in the chain rule \[\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}\], we aren’t cancelling out the part \[d\left[ h\left( x \right) \right]\]. Cancelation of the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

