
How do you find the degree of $\dfrac{\pi }{2}$ radians?
Answer
529.8k+ views
Hint: We describe the relation between the degree and radians, two ways to express the angles. We find the relation that 180 degrees is equal to $\pi $ radian. We express the degree value of $\dfrac{\pi }{2}$ in radian. We divide the relation between both sides with 2.
Complete step by step solution:
We need to find the relations between the degree and radians. There are two ways to express the angles. They are degrees and radians. The way to differentiate them is using the degree sign on the angle value.
If the angle is $x$, then it means it’s $x$ radian and if it’s given ${{x}^{\circ }}$, then that means $x$ degree.
The relation between these two units is that 180 degrees is equal to $\pi $ radian. The value of $\pi $ is the usual value where $\pi =3.14$. (approx.)
Therefore, $\pi \text{ rad}={{180}^{\circ }}$.
We can convert it into radian using the relation where 1 degree is equal to $\dfrac{\pi }{180}$ radian. This gives $x$ degree is equal to $\dfrac{\pi x}{180}$ radian.
We have to find the degree of $\dfrac{\pi }{2}$ radians.
We take half as a multiplication of the relation for both sides of $\pi \text{ rad}={{180}^{\circ }}$.
We get \[\dfrac{\pi }{2}\text{ rad}=\dfrac{{{180}^{\circ }}}{2}={{90}^{\circ }}\].
Therefore, $\dfrac{\pi }{2}$ radians is equal to ${{90}^{\circ }}$.
Note: Degrees and radians are ways of measuring angles. A radian is equal to the amount an angle would have to be open to capture an arc of the circle's circumference of equal length to the circle's radius.
Complete step by step solution:
We need to find the relations between the degree and radians. There are two ways to express the angles. They are degrees and radians. The way to differentiate them is using the degree sign on the angle value.
If the angle is $x$, then it means it’s $x$ radian and if it’s given ${{x}^{\circ }}$, then that means $x$ degree.
The relation between these two units is that 180 degrees is equal to $\pi $ radian. The value of $\pi $ is the usual value where $\pi =3.14$. (approx.)
Therefore, $\pi \text{ rad}={{180}^{\circ }}$.
We can convert it into radian using the relation where 1 degree is equal to $\dfrac{\pi }{180}$ radian. This gives $x$ degree is equal to $\dfrac{\pi x}{180}$ radian.
We have to find the degree of $\dfrac{\pi }{2}$ radians.
We take half as a multiplication of the relation for both sides of $\pi \text{ rad}={{180}^{\circ }}$.
We get \[\dfrac{\pi }{2}\text{ rad}=\dfrac{{{180}^{\circ }}}{2}={{90}^{\circ }}\].
Therefore, $\dfrac{\pi }{2}$ radians is equal to ${{90}^{\circ }}$.
Note: Degrees and radians are ways of measuring angles. A radian is equal to the amount an angle would have to be open to capture an arc of the circle's circumference of equal length to the circle's radius.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

