
Find the cube root of the rational number $\dfrac{686}{-3456}$ .
Answer
507.6k+ views
Hint: To find the cube root of $\dfrac{686}{-3456}$ , we have to first write this mathematically as $\sqrt[3]{\dfrac{686}{-3456}}$ . Then, we will write -3456 as $-1\times 3456$ . We have to write -1 in terms of powers of 3. Then, we will apply the rules associated with roots, that is, $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ and $\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}$ . We will then find the cube roots of the result using the ladder method. The result is not a perfect cube, then we will write their prime factors and simplify.
Complete step by step answer:
We have to find the cube root of the rational number $\dfrac{686}{-3456}$ . Let us write this mathematically as
$\begin{align}
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}} \\
& =\sqrt[3]{\dfrac{686}{-1\times 3456}} \\
\end{align}$
We know that $\left( -1 \right)$ raised to an odd power is -1 itself. Therefore, we can write the above form as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\sqrt[3]{\dfrac{686}{{{\left( -1 \right)}^{3}}\times 3456}}$
We know that $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ . Therefore, the above result can be written as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{\sqrt[3]{{{\left( -1 \right)}^{3}}\times 3456}}$
We know that $\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}$ .
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{\sqrt[3]{{{\left( -1 \right)}^{3}}}\times \sqrt[3]{3456}}$
Let us write the cube root of ${{\left( -1 \right)}^{3}}$ .
$\begin{align}
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{-1\times \sqrt[3]{3456}} \\
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{-\sqrt[3]{3456}}...\left( i \right) \\
\end{align}$
Let us first find the cube root of numerator and denominator.
Let us consider 686 and find its cube root using ladder method.
$\begin{align}
& 2\left| \!{\underline {\,
686 \,}} \right. \\
& 7\left| \!{\underline {\,
343 \,}} \right. \\
& 7\left| \!{\underline {\,
49 \,}} \right. \\
& 7\left| \!{\underline {\,
7 \,}} \right. \\
& \text{ }\text{ }\text{ }1 \\
\end{align}$
We can see that 686 is not a perfect cube. So let us write the prime factors of 686 as $2\times 7\times 7\times 7=2\times {{7}^{3}}$
Now, let us find the cube root of 3456.
\[\begin{align}
& 2\left| \!{\underline {\,
3456 \,}} \right. \\
& 2\left| \!{\underline {\,
1728 \,}} \right. \\
& 2\left| \!{\underline {\,
864 \,}} \right. \\
& 2\left| \!{\underline {\,
432 \,}} \right. \\
& 2\left| \!{\underline {\,
216 \,}} \right. \\
& 2\left| \!{\underline {\,
108 \,}} \right. \\
& 2\left| \!{\underline {\,
54 \,}} \right. \\
& 3\left| \!{\underline {\,
27 \,}} \right. \\
& 3\left| \!{\underline {\,
9 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& \text{ }\text{ }\text{ }1 \\
\end{align}\]
We can write 3456 as $2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 3$ . Let us try to group the same factors as a set of three.
$3456=\boxed{2\times 2\times 2}\times\boxed{ 2\times 2\times 2}\times 2\times\boxed{ 3\times 3\times 3}$
We cannot group all the prime factors. Therefore 3456 is not a perfect cube.
$3456=2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 3={{2}^{7}}\times {{3}^{3}}$
Now, let us substitute the prime factors of 686 and 3456 in (i).
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{2\times {{7}^{3}}}}{-\sqrt[3]{{{2}^{7}}\times {{3}^{3}}}}$
We know that $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ . Therefore, the above result can be written as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{2\times {{7}^{3}}}{{{2}^{7}}\times {{3}^{3}}}}$
Let us cancel 2 from the numerator and the denominator.
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{\require{cancel}\cancel{2}\times {{7}^{3}}}{{{2}^{{{\require{cancel}\cancel{7}}^{6}}}}\times {{3}^{3}}}}$
We can write the result of the above simplification as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{{{7}^{3}}}{{{2}^{6}}\times {{3}^{3}}}}$
Let us write ${{2}^{6}}$ as ${{2}^{3}}\times {{2}^{3}}$ since ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ .
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{{{7}^{3}}}{{{2}^{3}}\times {{2}^{3}}\times {{3}^{3}}}}$
We know that $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ . Therefore, the above result can be written as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{\sqrt[3]{{{7}^{3}}}}{\sqrt[3]{{{2}^{3}}\times {{2}^{3}}\times {{3}^{3}}}}$
We know that $\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}$ .
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{\sqrt[3]{{{7}^{3}}}}{\sqrt[3]{{{2}^{3}}}\times \sqrt[3]{{{2}^{3}}}\times \sqrt[3]{{{3}^{3}}}}$
We can write the result of the above equation as
$\begin{align}
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{7}{2\times 2\times 3} \\
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{7}{12} \\
\end{align}$
Hence, the cube root of the rational number $\dfrac{686}{-3456}$ is $-\dfrac{7}{12}$ .
Note: Students must be thorough with the rules associated with roots. They must know to find the n root of the numbers, where $n=1,2,3,...$ . They must understand thoroughly the rules of exponents. Students must never miss to take the cube root of -1 in the denominator.
Complete step by step answer:
We have to find the cube root of the rational number $\dfrac{686}{-3456}$ . Let us write this mathematically as
$\begin{align}
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}} \\
& =\sqrt[3]{\dfrac{686}{-1\times 3456}} \\
\end{align}$
We know that $\left( -1 \right)$ raised to an odd power is -1 itself. Therefore, we can write the above form as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\sqrt[3]{\dfrac{686}{{{\left( -1 \right)}^{3}}\times 3456}}$
We know that $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ . Therefore, the above result can be written as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{\sqrt[3]{{{\left( -1 \right)}^{3}}\times 3456}}$
We know that $\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}$ .
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{\sqrt[3]{{{\left( -1 \right)}^{3}}}\times \sqrt[3]{3456}}$
Let us write the cube root of ${{\left( -1 \right)}^{3}}$ .
$\begin{align}
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{-1\times \sqrt[3]{3456}} \\
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{686}}{-\sqrt[3]{3456}}...\left( i \right) \\
\end{align}$
Let us first find the cube root of numerator and denominator.
Let us consider 686 and find its cube root using ladder method.
$\begin{align}
& 2\left| \!{\underline {\,
686 \,}} \right. \\
& 7\left| \!{\underline {\,
343 \,}} \right. \\
& 7\left| \!{\underline {\,
49 \,}} \right. \\
& 7\left| \!{\underline {\,
7 \,}} \right. \\
& \text{ }\text{ }\text{ }1 \\
\end{align}$
We can see that 686 is not a perfect cube. So let us write the prime factors of 686 as $2\times 7\times 7\times 7=2\times {{7}^{3}}$
Now, let us find the cube root of 3456.
\[\begin{align}
& 2\left| \!{\underline {\,
3456 \,}} \right. \\
& 2\left| \!{\underline {\,
1728 \,}} \right. \\
& 2\left| \!{\underline {\,
864 \,}} \right. \\
& 2\left| \!{\underline {\,
432 \,}} \right. \\
& 2\left| \!{\underline {\,
216 \,}} \right. \\
& 2\left| \!{\underline {\,
108 \,}} \right. \\
& 2\left| \!{\underline {\,
54 \,}} \right. \\
& 3\left| \!{\underline {\,
27 \,}} \right. \\
& 3\left| \!{\underline {\,
9 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
& \text{ }\text{ }\text{ }1 \\
\end{align}\]
We can write 3456 as $2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 3$ . Let us try to group the same factors as a set of three.
$3456=\boxed{2\times 2\times 2}\times\boxed{ 2\times 2\times 2}\times 2\times\boxed{ 3\times 3\times 3}$
We cannot group all the prime factors. Therefore 3456 is not a perfect cube.
$3456=2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 3={{2}^{7}}\times {{3}^{3}}$
Now, let us substitute the prime factors of 686 and 3456 in (i).
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=\dfrac{\sqrt[3]{2\times {{7}^{3}}}}{-\sqrt[3]{{{2}^{7}}\times {{3}^{3}}}}$
We know that $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ . Therefore, the above result can be written as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{2\times {{7}^{3}}}{{{2}^{7}}\times {{3}^{3}}}}$
Let us cancel 2 from the numerator and the denominator.
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{\require{cancel}\cancel{2}\times {{7}^{3}}}{{{2}^{{{\require{cancel}\cancel{7}}^{6}}}}\times {{3}^{3}}}}$
We can write the result of the above simplification as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{{{7}^{3}}}{{{2}^{6}}\times {{3}^{3}}}}$
Let us write ${{2}^{6}}$ as ${{2}^{3}}\times {{2}^{3}}$ since ${{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}$ .
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\sqrt[3]{\dfrac{{{7}^{3}}}{{{2}^{3}}\times {{2}^{3}}\times {{3}^{3}}}}$
We know that $\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}$ . Therefore, the above result can be written as
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{\sqrt[3]{{{7}^{3}}}}{\sqrt[3]{{{2}^{3}}\times {{2}^{3}}\times {{3}^{3}}}}$
We know that $\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}$ .
$\Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{\sqrt[3]{{{7}^{3}}}}{\sqrt[3]{{{2}^{3}}}\times \sqrt[3]{{{2}^{3}}}\times \sqrt[3]{{{3}^{3}}}}$
We can write the result of the above equation as
$\begin{align}
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{7}{2\times 2\times 3} \\
& \Rightarrow \sqrt[3]{\dfrac{686}{-3456}}=-\dfrac{7}{12} \\
\end{align}$
Hence, the cube root of the rational number $\dfrac{686}{-3456}$ is $-\dfrac{7}{12}$ .
Note: Students must be thorough with the rules associated with roots. They must know to find the n root of the numbers, where $n=1,2,3,...$ . They must understand thoroughly the rules of exponents. Students must never miss to take the cube root of -1 in the denominator.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

