Answer
Verified
422.7k+ views
Hint: Here we have to determine the cube roots for all the given numbers. First we need to make the group of the three digits. After that for the left group we have to check where it lies. Then consider the number of the remaining three digits. Look at the third digit of the given number then you can say that the unit digit of its cube root must be in that third digit of the given number. So by using these conditions we can solve the given problem.
Complete step by step solution:
Let us look at the numbers one by one.
(i) \[19683\]: Making the groups of three-digits, it can be written as $(19)(683)$.
For the left-most group $(19)$, we observe that it lies between ${{2}^{3}}=8$ and ${{3}^{3}}=27$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[20\] and \[30\].
Looking at the units digit \[3\] of the given number, we can say that the units digit of its cube root must be \[7\].
Since it is given that the number is definitely a cube, the cube root of \[19683\] is \[27\].
(ii) \[59319\]: Making the groups of three-digits, it can be written as $(59)(319)$.
For the left-most group $(59)$, we observe that it lies between ${{3}^{3}}=27$ and ${{4}^{3}}=64$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[30\] and \[40\].
Looking at the units digit \[9\] of the given number, we can say that the units digit of its cube root must be \[9\].
Since it is given that the number is definitely a cube, the cube root of \[59319\] is \[39\].
(iii) \[85184\]: Making the groups of three-digits, it can be written as $(85)(184)$.
For the left-most group $(85)$, we observe that it lies between ${{4}^{3}}=64$ and ${{5}^{3}}=125$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[40\] and \[50\].
Looking at the units digit \[4\] of the given number, we can say that the units digit of its cube root must be \[4\].
Since it is given that the number is definitely a cube, the cube root of \[85184\] is \[44\].
(iv) \[148877\]: Making the groups of three-digits, it can be written as $(148)(877)$.
For the left-most group $(148)$, we observe that it lies between ${{5}^{3}}=125$ and ${{6}^{3}}=216$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[50\] and \[60\].
Looking at the units digit \[7\] of the given number, we can say that the units digit of its cube root must be \[3\].
Since it is given that the number is definitely a cube, the cube root of \[148877\] is \[57\].
Note: The above method works for perfect cubes only. e.g. \[19683\] and \[19783\] (etc.) both end in \[3\] but only \[19683\] is the perfect cube of \[27\].
Cubes of numbers from \[1\] to \[10\]:
Some other Properties of Cube Numbers:
If a number has \[n\] number of zeros at its end then it's cube will have \[3n\] number of zeros at its end.
The cube of an even number is always even and the cube of an odd number is always odd.
When a perfect cube is prime factorized, its factors can be grouped into triplets; groups of \[3\] identical primes.
Complete step by step solution:
Let us look at the numbers one by one.
(i) \[19683\]: Making the groups of three-digits, it can be written as $(19)(683)$.
For the left-most group $(19)$, we observe that it lies between ${{2}^{3}}=8$ and ${{3}^{3}}=27$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[20\] and \[30\].
Looking at the units digit \[3\] of the given number, we can say that the units digit of its cube root must be \[7\].
Since it is given that the number is definitely a cube, the cube root of \[19683\] is \[27\].
(ii) \[59319\]: Making the groups of three-digits, it can be written as $(59)(319)$.
For the left-most group $(59)$, we observe that it lies between ${{3}^{3}}=27$ and ${{4}^{3}}=64$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[30\] and \[40\].
Looking at the units digit \[9\] of the given number, we can say that the units digit of its cube root must be \[9\].
Since it is given that the number is definitely a cube, the cube root of \[59319\] is \[39\].
(iii) \[85184\]: Making the groups of three-digits, it can be written as $(85)(184)$.
For the left-most group $(85)$, we observe that it lies between ${{4}^{3}}=64$ and ${{5}^{3}}=125$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[40\] and \[50\].
Looking at the units digit \[4\] of the given number, we can say that the units digit of its cube root must be \[4\].
Since it is given that the number is definitely a cube, the cube root of \[85184\] is \[44\].
(iv) \[148877\]: Making the groups of three-digits, it can be written as $(148)(877)$.
For the left-most group $(148)$, we observe that it lies between ${{5}^{3}}=125$ and ${{6}^{3}}=216$.
Therefore, considering the number of remaining groups of three-digits, the required cube root lies between \[50\] and \[60\].
Looking at the units digit \[7\] of the given number, we can say that the units digit of its cube root must be \[3\].
Since it is given that the number is definitely a cube, the cube root of \[148877\] is \[57\].
Note: The above method works for perfect cubes only. e.g. \[19683\] and \[19783\] (etc.) both end in \[3\] but only \[19683\] is the perfect cube of \[27\].
Cubes of numbers from \[1\] to \[10\]:
${{1}^{3}}$ | \[001\] | ${{6}^{3}}$ | \[216\] |
${{2}^{3}}$ | \[008\] | ${{7}^{3}}$ | \[343\] |
${{3}^{3}}$ | \[027\] | ${{8}^{3}}$ | \[512\] |
${{4}^{3}}$ | \[064\] | ${{9}^{3}}$ | \[729\] |
${{5}^{3}}$ | \[125\] | ${{10}^{3}}$ | \[1000\] |
Some other Properties of Cube Numbers:
If a number has \[n\] number of zeros at its end then it's cube will have \[3n\] number of zeros at its end.
The cube of an even number is always even and the cube of an odd number is always odd.
When a perfect cube is prime factorized, its factors can be grouped into triplets; groups of \[3\] identical primes.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE