
How do you find the cube root of $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$?
Answer
542.1k+ views
Hint: In this problem we need to calculate the cube root of the given value which is an imaginary number. For this we are going to use the De Moivre’s theorem to solve the problem. Now we will write the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the given value. After that we will apply the De Moivre’s theorem and simplify the obtained equation to get the required result.
Complete step by step solution: Given that, $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
Let $z=64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
To calculate the cube root of the above value, applying cube root on both sides of the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)}$
Whenever dealing with complex variable equation such as this it is essential to remember that the complex exponential has a period of $2\pi $, so we can equivalently write the above equation as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right)}$
Now we are writing the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the above value, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De Moivre’s theorem we can write the above value as
$\Rightarrow \sqrt[3]{z}={{64}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
We know that the value of $\sqrt[3]{64}=4$. Substituting this value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
Hence the value of cube root of the given value $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$ is $4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$ where $n=1,2,3$.
Note: For this we can also calculate the exact value by substituting $n=1,2,3$ in the calculated result and simplify the equation. Then we will get three values which are $4\cos \left( \dfrac{\pi }{15} \right)+i\sin \left( \dfrac{\pi }{15} \right)$, $4\cos \left( \dfrac{7\pi }{15} \right)+i\sin \left( \dfrac{7\pi }{15} \right)$, $4\cos \left( \dfrac{11\pi }{15} \right)+i\sin \left( \dfrac{11\pi }{15} \right)$.
Complete step by step solution: Given that, $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
Let $z=64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
To calculate the cube root of the above value, applying cube root on both sides of the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)}$
Whenever dealing with complex variable equation such as this it is essential to remember that the complex exponential has a period of $2\pi $, so we can equivalently write the above equation as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right)}$
Now we are writing the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the above value, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De Moivre’s theorem we can write the above value as
$\Rightarrow \sqrt[3]{z}={{64}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
We know that the value of $\sqrt[3]{64}=4$. Substituting this value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
Hence the value of cube root of the given value $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$ is $4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$ where $n=1,2,3$.
Note: For this we can also calculate the exact value by substituting $n=1,2,3$ in the calculated result and simplify the equation. Then we will get three values which are $4\cos \left( \dfrac{\pi }{15} \right)+i\sin \left( \dfrac{\pi }{15} \right)$, $4\cos \left( \dfrac{7\pi }{15} \right)+i\sin \left( \dfrac{7\pi }{15} \right)$, $4\cos \left( \dfrac{11\pi }{15} \right)+i\sin \left( \dfrac{11\pi }{15} \right)$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

