
How do you find the cube root of $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$?
Answer
528.3k+ views
Hint: In this problem we need to calculate the cube root of the given value which is an imaginary number. For this we are going to use the De Moivre’s theorem to solve the problem. Now we will write the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the given value. After that we will apply the De Moivre’s theorem and simplify the obtained equation to get the required result.
Complete step by step solution: Given that, $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
Let $z=64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
To calculate the cube root of the above value, applying cube root on both sides of the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)}$
Whenever dealing with complex variable equation such as this it is essential to remember that the complex exponential has a period of $2\pi $, so we can equivalently write the above equation as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right)}$
Now we are writing the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the above value, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De Moivre’s theorem we can write the above value as
$\Rightarrow \sqrt[3]{z}={{64}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
We know that the value of $\sqrt[3]{64}=4$. Substituting this value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
Hence the value of cube root of the given value $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$ is $4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$ where $n=1,2,3$.
Note: For this we can also calculate the exact value by substituting $n=1,2,3$ in the calculated result and simplify the equation. Then we will get three values which are $4\cos \left( \dfrac{\pi }{15} \right)+i\sin \left( \dfrac{\pi }{15} \right)$, $4\cos \left( \dfrac{7\pi }{15} \right)+i\sin \left( \dfrac{7\pi }{15} \right)$, $4\cos \left( \dfrac{11\pi }{15} \right)+i\sin \left( \dfrac{11\pi }{15} \right)$.
Complete step by step solution: Given that, $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
Let $z=64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
To calculate the cube root of the above value, applying cube root on both sides of the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)}$
Whenever dealing with complex variable equation such as this it is essential to remember that the complex exponential has a period of $2\pi $, so we can equivalently write the above equation as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right)}$
Now we are writing the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the above value, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De Moivre’s theorem we can write the above value as
$\Rightarrow \sqrt[3]{z}={{64}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
We know that the value of $\sqrt[3]{64}=4$. Substituting this value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
Hence the value of cube root of the given value $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$ is $4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$ where $n=1,2,3$.
Note: For this we can also calculate the exact value by substituting $n=1,2,3$ in the calculated result and simplify the equation. Then we will get three values which are $4\cos \left( \dfrac{\pi }{15} \right)+i\sin \left( \dfrac{\pi }{15} \right)$, $4\cos \left( \dfrac{7\pi }{15} \right)+i\sin \left( \dfrac{7\pi }{15} \right)$, $4\cos \left( \dfrac{11\pi }{15} \right)+i\sin \left( \dfrac{11\pi }{15} \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

