
How do you find the cube root of $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$?
Answer
445.8k+ views
Hint: In this problem we need to calculate the cube root of the given value which is an imaginary number. For this we are going to use the De Moivre’s theorem to solve the problem. Now we will write the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the given value. After that we will apply the De Moivre’s theorem and simplify the obtained equation to get the required result.
Complete step by step solution: Given that, $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
Let $z=64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
To calculate the cube root of the above value, applying cube root on both sides of the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)}$
Whenever dealing with complex variable equation such as this it is essential to remember that the complex exponential has a period of $2\pi $, so we can equivalently write the above equation as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right)}$
Now we are writing the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the above value, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De Moivre’s theorem we can write the above value as
$\Rightarrow \sqrt[3]{z}={{64}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
We know that the value of $\sqrt[3]{64}=4$. Substituting this value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
Hence the value of cube root of the given value $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$ is $4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$ where $n=1,2,3$.
Note: For this we can also calculate the exact value by substituting $n=1,2,3$ in the calculated result and simplify the equation. Then we will get three values which are $4\cos \left( \dfrac{\pi }{15} \right)+i\sin \left( \dfrac{\pi }{15} \right)$, $4\cos \left( \dfrac{7\pi }{15} \right)+i\sin \left( \dfrac{7\pi }{15} \right)$, $4\cos \left( \dfrac{11\pi }{15} \right)+i\sin \left( \dfrac{11\pi }{15} \right)$.
Complete step by step solution: Given that, $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
Let $z=64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$.
To calculate the cube root of the above value, applying cube root on both sides of the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)}$
Whenever dealing with complex variable equation such as this it is essential to remember that the complex exponential has a period of $2\pi $, so we can equivalently write the above equation as
$\Rightarrow \sqrt[3]{z}=\sqrt[3]{64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right)}$
Now we are writing the cube root as the ${{\left( \dfrac{1}{3} \right)}^{rd}}$ power of the above value, then we will get
$\Rightarrow \sqrt[3]{z}={{\left[ 64\left( \cos \left( 2n\pi +\dfrac{\pi }{5} \right)+i\sin \left( 2n\pi +\dfrac{\pi }{5} \right) \right) \right]}^{\dfrac{1}{3}}}$
From the De Moivre’s theorem we can write the above value as
$\Rightarrow \sqrt[3]{z}={{64}^{\dfrac{1}{3}}}\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
We know that the value of $\sqrt[3]{64}=4$. Substituting this value in the above equation, then we will get
$\Rightarrow \sqrt[3]{z}=4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$
Hence the value of cube root of the given value $64\left( \cos \left( \dfrac{\pi }{5} \right)+i\sin \left( \dfrac{\pi }{5} \right) \right)$ is $4\left( \cos \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right)+i\sin \left( \dfrac{2n\pi +\dfrac{\pi }{5}}{3} \right) \right)$ where $n=1,2,3$.
Note: For this we can also calculate the exact value by substituting $n=1,2,3$ in the calculated result and simplify the equation. Then we will get three values which are $4\cos \left( \dfrac{\pi }{15} \right)+i\sin \left( \dfrac{\pi }{15} \right)$, $4\cos \left( \dfrac{7\pi }{15} \right)+i\sin \left( \dfrac{7\pi }{15} \right)$, $4\cos \left( \dfrac{11\pi }{15} \right)+i\sin \left( \dfrac{11\pi }{15} \right)$.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
