
Find the cube root of 13824 by the method of prime factorization.
$
A.{\text{ 24}} \\
B.{\text{ 18}} \\
C.{\text{ 12}} \\
D.{\text{ 36}} \\
$
Answer
501.5k+ views
Hint- In order to solve such a question of finding cube root by prime factorization method, first find the prime factorization of the number and further make the triplet of factors.
Complete step-by-step solution -
Given number: 13824
In order to find the prime factorization of the number, we continuously divide the number with prime numbers.
Prime factorization of number 13824 is:
$13824 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
Further we make the triplet of factors:
$13824 = \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times \left( {3 \times 3 \times 3} \right)$
Further simplifying the RHS and writing it in the form of a cube.
\[
\Rightarrow 13824 = {2^3} \times {2^3} \times {2^3} \times {3^3} \\
\Rightarrow 13824 = {2^9} \times {3^3} \\
\]
Now we will proceed with finding the cube root
\[
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {\left( {{2^9} \times {3^3}} \right)^{\dfrac{1}{3}}} \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {\left[ {{{\left( {{2^3} \times 3} \right)}^3}} \right]^{\dfrac{1}{3}}} \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {\left( {{2^3} \times 3} \right)^{3 \times \dfrac{1}{3}}}{\text{ }}\left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m \times n}}} \right] \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {2^3} \times 3 \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = 8 \times 3 = 24 \\
\]
Hence, the cube root of 13824 is 24.
So, option A is the correct option.
Note- In mathematics, a cube root of a number x is a number y such that ${y^3} = x$ . All nonzero real numbers have exactly one real cube root. Prime Factorization is finding which prime numbers multiply together to make the original number. Prime factorization method is one of the basic and easiest ways of finding the cube root of any number.
Complete step-by-step solution -
Given number: 13824
In order to find the prime factorization of the number, we continuously divide the number with prime numbers.
Prime factorization of number 13824 is:
$13824 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
Further we make the triplet of factors:
$13824 = \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times \left( {2 \times 2 \times 2} \right) \times \left( {3 \times 3 \times 3} \right)$
Further simplifying the RHS and writing it in the form of a cube.
\[
\Rightarrow 13824 = {2^3} \times {2^3} \times {2^3} \times {3^3} \\
\Rightarrow 13824 = {2^9} \times {3^3} \\
\]
Now we will proceed with finding the cube root
\[
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {\left( {{2^9} \times {3^3}} \right)^{\dfrac{1}{3}}} \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {\left[ {{{\left( {{2^3} \times 3} \right)}^3}} \right]^{\dfrac{1}{3}}} \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {\left( {{2^3} \times 3} \right)^{3 \times \dfrac{1}{3}}}{\text{ }}\left[ {\because {{\left( {{a^m}} \right)}^n} = {a^{m \times n}}} \right] \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = {2^3} \times 3 \\
\Rightarrow {\left( {13824} \right)^{\dfrac{1}{3}}} = 8 \times 3 = 24 \\
\]
Hence, the cube root of 13824 is 24.
So, option A is the correct option.
Note- In mathematics, a cube root of a number x is a number y such that ${y^3} = x$ . All nonzero real numbers have exactly one real cube root. Prime Factorization is finding which prime numbers multiply together to make the original number. Prime factorization method is one of the basic and easiest ways of finding the cube root of any number.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What is 1 divided by 0 class 8 maths CBSE

Advantages and disadvantages of science

Write a letter to your class teacher asking for 2 days class 8 english CBSE

Who commanded the Hector the first British trading class 8 social science CBSE

The past tense of Cut is Cutted A Yes B No class 8 english CBSE

