
Find the cube root of $135\sqrt{3}-87\sqrt{6}$.
Answer
596.1k+ views
Hint: This question can be solved easily if we can write $135\sqrt{3}-87\sqrt{6}$ in the form of ${{(a-b)}^{3}}$. Because it is easier to find the cube root, when it is represented as above.
Complete step-by-step answer:
We know that,
$\begin{align}
& \Rightarrow {{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b) \\
& \Rightarrow {{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}.......(i) \\
\end{align}$
Now, we have to analyse the question and check whether it can be written in the form equation(i). We will first write the question in the form of equation (i). Then we will find the cube root.
According to the question we have to find the cube root of $135\sqrt{3}-87\sqrt{6}$.
Now, we are going to simplify each term of the question
First, let us take $135\sqrt{3}$ and $87\sqrt{6}$.
Here we can write $135\sqrt{3}$as,
$\Rightarrow 135\sqrt{3}=81\sqrt{3}+54\sqrt{3}.......(ii)$
Similarly, we can write $87\sqrt{6}$ as,
$\Rightarrow 87\sqrt{6}=81\sqrt{6}+6\sqrt{6}.......(iii)$
Now, we can rewrite the question as,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}=(81\sqrt{3}+54\sqrt{3})-(81\sqrt{6}+6\sqrt{6})$
Opening the brackets,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}=81\sqrt{3}+54\sqrt{3}-81\sqrt{6}-6\sqrt{6}$
Rearranging the above equation to get the form of equation(i) we have,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}=81\sqrt{3}-6\sqrt{6}-81\sqrt{6}+54\sqrt{3}.......(iv)$
Here $81\sqrt{3}$ can be written as ${{\left( 3\sqrt{3} \right)}^{3}}$ . Similarly, $6\sqrt{6}$ can be written as ${{\left( \sqrt{6} \right)}^{3}}$.
Substituting this in equation (iv) we have,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}={{\left( 3\sqrt{3} \right)}^{3}}-{{\left( \sqrt{6} \right)}^{3}}-81\sqrt{6}+54\sqrt{3}.......(v)$
Equation (v) we observe ${{a}^{3}}={{\left( 3\sqrt{3} \right)}^{3}}$ and ${{b}^{3}}={{\left( \sqrt{6} \right)}^{3}}$.
Hence, equation (v) can be written in the form of equation (i) as follows,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}={{\left( 3\sqrt{3} \right)}^{3}}-{{\left( \sqrt{6} \right)}^{3}}-3\times 3\sqrt{3}\times \sqrt{6}\left( 3\sqrt{3}-\sqrt{6} \right).....(vi)$
Thus, from equation (vi) we observe that the question is rewritten in the form of equation (i).
Now, we can find the cube root.
Comparing equation (i) and equation (vi) we can simplify equation (vi) as,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}={{\left( 3\sqrt{3}-\sqrt{6} \right)}^{3}}......(vii)$
Taking the cube root on both sides,
$\begin{align}
& \Rightarrow \sqrt[3]{135\sqrt{3}-87\sqrt{6}}=\sqrt[3]{{{\left( 3\sqrt{3}-\sqrt{6} \right)}^{3}}} \\
& \Rightarrow \sqrt[3]{135\sqrt{3}-87\sqrt{6}}={{\left( {{\left( 3\sqrt{3}-\sqrt{6} \right)}^{3}} \right)}^{\frac{1}{3}}} \\
& \Rightarrow \sqrt[3]{135\sqrt{3}-87\sqrt{6}}=\left( 3\sqrt{3}-\sqrt{6} \right).......(viii) \\
\end{align}$
Hence, the cube root of $135\sqrt{3}-87\sqrt{6}$ is $3\sqrt{3}-\sqrt{6}$.
Note: The main idea is representing the problem in the form of,
\[\Rightarrow {{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}\]. If this is correct then the student can easily simplify the above expression to obtain the cube root.
Complete step-by-step answer:
We know that,
$\begin{align}
& \Rightarrow {{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab(a-b) \\
& \Rightarrow {{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}.......(i) \\
\end{align}$
Now, we have to analyse the question and check whether it can be written in the form equation(i). We will first write the question in the form of equation (i). Then we will find the cube root.
According to the question we have to find the cube root of $135\sqrt{3}-87\sqrt{6}$.
Now, we are going to simplify each term of the question
First, let us take $135\sqrt{3}$ and $87\sqrt{6}$.
Here we can write $135\sqrt{3}$as,
$\Rightarrow 135\sqrt{3}=81\sqrt{3}+54\sqrt{3}.......(ii)$
Similarly, we can write $87\sqrt{6}$ as,
$\Rightarrow 87\sqrt{6}=81\sqrt{6}+6\sqrt{6}.......(iii)$
Now, we can rewrite the question as,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}=(81\sqrt{3}+54\sqrt{3})-(81\sqrt{6}+6\sqrt{6})$
Opening the brackets,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}=81\sqrt{3}+54\sqrt{3}-81\sqrt{6}-6\sqrt{6}$
Rearranging the above equation to get the form of equation(i) we have,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}=81\sqrt{3}-6\sqrt{6}-81\sqrt{6}+54\sqrt{3}.......(iv)$
Here $81\sqrt{3}$ can be written as ${{\left( 3\sqrt{3} \right)}^{3}}$ . Similarly, $6\sqrt{6}$ can be written as ${{\left( \sqrt{6} \right)}^{3}}$.
Substituting this in equation (iv) we have,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}={{\left( 3\sqrt{3} \right)}^{3}}-{{\left( \sqrt{6} \right)}^{3}}-81\sqrt{6}+54\sqrt{3}.......(v)$
Equation (v) we observe ${{a}^{3}}={{\left( 3\sqrt{3} \right)}^{3}}$ and ${{b}^{3}}={{\left( \sqrt{6} \right)}^{3}}$.
Hence, equation (v) can be written in the form of equation (i) as follows,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}={{\left( 3\sqrt{3} \right)}^{3}}-{{\left( \sqrt{6} \right)}^{3}}-3\times 3\sqrt{3}\times \sqrt{6}\left( 3\sqrt{3}-\sqrt{6} \right).....(vi)$
Thus, from equation (vi) we observe that the question is rewritten in the form of equation (i).
Now, we can find the cube root.
Comparing equation (i) and equation (vi) we can simplify equation (vi) as,
$\Rightarrow 135\sqrt{3}-87\sqrt{6}={{\left( 3\sqrt{3}-\sqrt{6} \right)}^{3}}......(vii)$
Taking the cube root on both sides,
$\begin{align}
& \Rightarrow \sqrt[3]{135\sqrt{3}-87\sqrt{6}}=\sqrt[3]{{{\left( 3\sqrt{3}-\sqrt{6} \right)}^{3}}} \\
& \Rightarrow \sqrt[3]{135\sqrt{3}-87\sqrt{6}}={{\left( {{\left( 3\sqrt{3}-\sqrt{6} \right)}^{3}} \right)}^{\frac{1}{3}}} \\
& \Rightarrow \sqrt[3]{135\sqrt{3}-87\sqrt{6}}=\left( 3\sqrt{3}-\sqrt{6} \right).......(viii) \\
\end{align}$
Hence, the cube root of $135\sqrt{3}-87\sqrt{6}$ is $3\sqrt{3}-\sqrt{6}$.
Note: The main idea is representing the problem in the form of,
\[\Rightarrow {{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}\]. If this is correct then the student can easily simplify the above expression to obtain the cube root.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE


