
Find the cube of $ \left( {x - 2y} \right) $
Answer
482.1k+ views
Hint: Cube of the number can be found by cubing the expression, then expanding it using cubic formula of $ {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} $ . Compare the variables of the given expressions with the standard identities to get the required.
Complete step-by-step answer:
The given expression is
$ E = \left( {x - 2y} \right) \cdots \left( 1 \right) $
We have to calculate $ {E^3} = {\left( {x - 2y} \right)^3} $ .
On comparing with it can be concluded that
$ a = x $ and $ b = - 2y $
Now Cubing both sides of equation (1), we get [Using the formula of: $ {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} $ ]
$
\Rightarrow {E^3} = {x^3} + 3{\left( x \right)^2}\left( { - 2y} \right) + 3\left( x \right){\left( { - 2y} \right)^2} + {\left( { - 2y} \right)^3} \\
{E^3} = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} \\
$
The answer for the cube of $ \left( {x - 2y} \right) $ is $ {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} $ .
Note: Care should be taken while substituting the values of and with their respective signs in the formula of . The minus sign should be carefully taken into account during the substitution.
It can also be solved using $ {\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3} $ .
If we can compare the expression $ {\left( {x - 2y} \right)^3} $ with $ {\left( {a - b} \right)^3} $ . We can say that $ a = x $ and $ b = 2y $ .
On expanding the expression $ {\left( {x - 2y} \right)^3} $ we get,
$
{E^3} = {x^3} - 3{\left( x \right)^2}\left( {2y} \right) + 3x{\left( {2y} \right)^2} - {\left( {2y} \right)^3} \\
{E^3} = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} \\
$
Complete step-by-step answer:
The given expression is
$ E = \left( {x - 2y} \right) \cdots \left( 1 \right) $
We have to calculate $ {E^3} = {\left( {x - 2y} \right)^3} $ .
On comparing with it can be concluded that
$ a = x $ and $ b = - 2y $
Now Cubing both sides of equation (1), we get [Using the formula of: $ {\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} $ ]
$
\Rightarrow {E^3} = {x^3} + 3{\left( x \right)^2}\left( { - 2y} \right) + 3\left( x \right){\left( { - 2y} \right)^2} + {\left( { - 2y} \right)^3} \\
{E^3} = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} \\
$
The answer for the cube of $ \left( {x - 2y} \right) $ is $ {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} $ .
Note: Care should be taken while substituting the values of and with their respective signs in the formula of . The minus sign should be carefully taken into account during the substitution.
It can also be solved using $ {\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3} $ .
If we can compare the expression $ {\left( {x - 2y} \right)^3} $ with $ {\left( {a - b} \right)^3} $ . We can say that $ a = x $ and $ b = 2y $ .
On expanding the expression $ {\left( {x - 2y} \right)^3} $ we get,
$
{E^3} = {x^3} - 3{\left( x \right)^2}\left( {2y} \right) + 3x{\left( {2y} \right)^2} - {\left( {2y} \right)^3} \\
{E^3} = {x^3} - 6{x^2}y + 12x{y^2} - 8{y^3} \\
$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

How many ounces are in 500 mL class 8 maths CBSE

1 meter is equal to how many feet class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What led to the incident of Bloody Sunday in Russia class 8 social science CBSE

10 slogans on organ donation class 8 english CBSE
