
Find the coordinates of the point where the line through the points A = (3,4,1) and B = (5,1,6) crosses the $xy$- plane.
Answer
512.4k+ views
Hint: We start solving this problem by considering the vector form of the given two points. Then we use the formula for the equation of line passing through two points with position vectors $\overrightarrow{a}$and $\overrightarrow{b}$ i.e., $\overrightarrow{r}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overleftrightarrow{a} \right)$. Then we consider the general line which crosses the $xy$- plane and equate it to the obtained line equation. Then we equate the corresponding components to get the value of $\lambda $. Hence, we get the coordinates of the required point.
Complete step by step answer:
Let us consider the given points A = (3,4,1) and B = (5,1,6).
Now, we change them into vector form, we get
$\overrightarrow{a}=3\hat{i}+4\hat{j}+\hat{k}$ and $\overrightarrow{b}=5\hat{i}+\hat{j}+6\hat{k}$.
Let us consider the formula for the equation of line passing through two points with position vectors $\overrightarrow{a}$and $\overrightarrow{b}$, $\overrightarrow{r}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overleftrightarrow{a} \right)$.
Using the above formula, we get
\[\begin{align}
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ \left( 5\hat{i}+\hat{j}+6\hat{k} \right)-\left( 3\hat{i}+4\hat{j}+\hat{k} \right) \right] \\
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ 5\hat{i}+\hat{j}+6\hat{k}-3\hat{i}-4\hat{j}-\hat{k} \right] \\
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ \left( 5-3 \right)\hat{i}+\left( 1-4 \right)\hat{j}+\left( 6-1 \right)\hat{k} \right] \\
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ 2\hat{i}-3\hat{j}+5\hat{k} \right] \\
& \overrightarrow{r}=\left( 3+2\lambda \right)\hat{i}+\left( 4-3\lambda \right)\hat{j}+\left( 1+5\lambda \right)\hat{k} \\
\end{align}\]
So, we get the general equation of line passing through two points A = (3,4,1) and B = (5,1,6) as \[\overrightarrow{r}=\left( 3+2\lambda \right)\hat{i}+\left( 4-3\lambda \right)\hat{j}+\left( 1+5\lambda \right)\hat{k}.....................\left( 1 \right)\]
We were given that the above line crosses $xy$- plane.
So, we consider the $z$- coordinate of the required point as 0.
Let us consider the coordinates of the point where the line crosses the $xy$- plane as $\left( x,y,0 \right)$.
So, we get $\overrightarrow{r}=x\hat{i}+y\hat{j}+0\hat{k}....................\left( 2 \right)$
Since this point crosses the given plane, we substitute equation (2) in equation (1), we get
$x\hat{i}+y\hat{j}+0\hat{k}=\left( 3+2\lambda \right)\hat{i}+\left( 4-3\lambda \right)\hat{j}+\left( 1+5\lambda \right)\hat{k}$
Now, let us equate the corresponding components. Then, we get
$\begin{align}
& x=\left( 3+2\lambda \right)................\left( 3 \right) \\
& y=\left( 4-3\lambda \right)...............\left( 4 \right) \\
& 0=\left( 1+5\lambda \right).................\left( 5 \right) \\
\end{align}$
Now, we solve equation (5), we get
$\begin{align}
& -5\lambda =1 \\
& \lambda =-\dfrac{1}{5} \\
\end{align}$
Now, by substituting the value of $\lambda $ in equation (3), we get
$\begin{align}
& x=3+2\lambda \\
& \Rightarrow x=3+2\left( -\dfrac{1}{5} \right) \\
& \Rightarrow x=3-\dfrac{2}{5} \\
& \Rightarrow x=\dfrac{13}{5} \\
\end{align}$
And by substituting the value of $\lambda $ in equation (4), we get
$\begin{align}
& y=4-3\lambda \\
& \Rightarrow y=4-3\left( -\dfrac{1}{5} \right) \\
& \Rightarrow y=4+\dfrac{3}{5} \\
& \Rightarrow y=\dfrac{23}{5} \\
\end{align}$
Therefore, the coordinates of the point where line through the points A = (3,4,1) and B = (5,1,6) crosses the $xy$- plane are $\left( \dfrac{13}{5},\dfrac{23}{5},0 \right)$.
Hence, the final answer is $\left( \dfrac{13}{5},\dfrac{23}{5},0 \right)$.
Note:
There is a possibility of making a mistake by considering $x$and $y$ coordinates as zero as the line crosses $xy$ -plane. But it is wrong, when a line crosses the xy plane we must consider $z$ - coordinate as zero.
Complete step by step answer:
Let us consider the given points A = (3,4,1) and B = (5,1,6).
Now, we change them into vector form, we get
$\overrightarrow{a}=3\hat{i}+4\hat{j}+\hat{k}$ and $\overrightarrow{b}=5\hat{i}+\hat{j}+6\hat{k}$.
Let us consider the formula for the equation of line passing through two points with position vectors $\overrightarrow{a}$and $\overrightarrow{b}$, $\overrightarrow{r}=\overrightarrow{a}+\lambda \left( \overrightarrow{b}-\overleftrightarrow{a} \right)$.
Using the above formula, we get
\[\begin{align}
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ \left( 5\hat{i}+\hat{j}+6\hat{k} \right)-\left( 3\hat{i}+4\hat{j}+\hat{k} \right) \right] \\
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ 5\hat{i}+\hat{j}+6\hat{k}-3\hat{i}-4\hat{j}-\hat{k} \right] \\
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ \left( 5-3 \right)\hat{i}+\left( 1-4 \right)\hat{j}+\left( 6-1 \right)\hat{k} \right] \\
& \overrightarrow{r}=\left( 3\hat{i}+4\hat{j}+\hat{k} \right)+\lambda \left[ 2\hat{i}-3\hat{j}+5\hat{k} \right] \\
& \overrightarrow{r}=\left( 3+2\lambda \right)\hat{i}+\left( 4-3\lambda \right)\hat{j}+\left( 1+5\lambda \right)\hat{k} \\
\end{align}\]
So, we get the general equation of line passing through two points A = (3,4,1) and B = (5,1,6) as \[\overrightarrow{r}=\left( 3+2\lambda \right)\hat{i}+\left( 4-3\lambda \right)\hat{j}+\left( 1+5\lambda \right)\hat{k}.....................\left( 1 \right)\]
We were given that the above line crosses $xy$- plane.
So, we consider the $z$- coordinate of the required point as 0.
Let us consider the coordinates of the point where the line crosses the $xy$- plane as $\left( x,y,0 \right)$.
So, we get $\overrightarrow{r}=x\hat{i}+y\hat{j}+0\hat{k}....................\left( 2 \right)$
Since this point crosses the given plane, we substitute equation (2) in equation (1), we get
$x\hat{i}+y\hat{j}+0\hat{k}=\left( 3+2\lambda \right)\hat{i}+\left( 4-3\lambda \right)\hat{j}+\left( 1+5\lambda \right)\hat{k}$
Now, let us equate the corresponding components. Then, we get
$\begin{align}
& x=\left( 3+2\lambda \right)................\left( 3 \right) \\
& y=\left( 4-3\lambda \right)...............\left( 4 \right) \\
& 0=\left( 1+5\lambda \right).................\left( 5 \right) \\
\end{align}$
Now, we solve equation (5), we get
$\begin{align}
& -5\lambda =1 \\
& \lambda =-\dfrac{1}{5} \\
\end{align}$
Now, by substituting the value of $\lambda $ in equation (3), we get
$\begin{align}
& x=3+2\lambda \\
& \Rightarrow x=3+2\left( -\dfrac{1}{5} \right) \\
& \Rightarrow x=3-\dfrac{2}{5} \\
& \Rightarrow x=\dfrac{13}{5} \\
\end{align}$
And by substituting the value of $\lambda $ in equation (4), we get
$\begin{align}
& y=4-3\lambda \\
& \Rightarrow y=4-3\left( -\dfrac{1}{5} \right) \\
& \Rightarrow y=4+\dfrac{3}{5} \\
& \Rightarrow y=\dfrac{23}{5} \\
\end{align}$
Therefore, the coordinates of the point where line through the points A = (3,4,1) and B = (5,1,6) crosses the $xy$- plane are $\left( \dfrac{13}{5},\dfrac{23}{5},0 \right)$.
Hence, the final answer is $\left( \dfrac{13}{5},\dfrac{23}{5},0 \right)$.
Note:
There is a possibility of making a mistake by considering $x$and $y$ coordinates as zero as the line crosses $xy$ -plane. But it is wrong, when a line crosses the xy plane we must consider $z$ - coordinate as zero.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
