
Find the condition of $f\left( t \right)$ at $t = 0$ where, $f(t) = \dfrac{{\sin t}}{t}$
a) A minimum
b) A discontinuity
c) A point of inflexion
d) A maximum
Answer
615.6k+ views
Hint: In this question you need to check the continuity of a function by finding out $(LHL)$ and $\left( {RHL} \right)$, to check maximum and minimum, differentiate the function twice. Is the resultant value being greater than zero then the given function is minimum else it is maximum?
Complete step-by-step answer:
In this question it is given that,
$f(t) = \dfrac{{\sin t}}{t}$
Now at $t = 0$ we will check continuity of a function $f\left( t \right)$ by finding out the left hand limit $(LHL)$ and right hand limit$\left( {RHL} \right)$.
First, let us find out $(LHL)$ whose formula when $t = 0$ is,
$LHL = f\left( {0 - h} \right)$
Now replace ‘$t$’ by $\left( {0 - h} \right)$ in equation (1) with $\mathop {\lim }\limits_{h \to 0} $, we get,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (0 - h)}}{{(0 - h)}}$
On simplification,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin ( - h)}}{{( - h)}}$
We know that, $\sin ( - h) = - \sin (h)$
So above equation becomes,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \sinh }}{{ - h}}$
On simplification we get,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h}$
We know that, $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$
Thus,
$ \Rightarrow LHL = 1$
Now, for $\left( {RHL} \right)$ we use below formula at $t = 0$
$ \Rightarrow RHL = f(0 + h)$
Using equation (1) replace ‘t’ by $\left( {0 + h} \right)$ and by adding $\mathop {\lim }\limits_{h \to 0} $ we get,
$ \Rightarrow RHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (0 + h)}}{h}$
On simplification we get,
$ \Rightarrow RHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h}$
From equation (2) we get
$ \Rightarrow RHL = 1$
We will now find out $f\left( 0 \right)$, using equation (2)
$ \Rightarrow f(0) = 1$
Thus,
$ \Rightarrow LHL = RHL = f(0)$
If the above condition is satisfied, then we can conclude that the given function is continuous at $t = 0$.
Now, we will check minimum or maximum at a function,
Differentiating $f\left( t \right)$ using product rule,
$\dfrac{d}{{dx}}(u,v) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
We get,
$ \Rightarrow f'(t) = \dfrac{1}{t}\cos t - \dfrac{1}{{{t^2}}}\sin t$
Now, again differentiate (3) with respect to ‘$t$’ using product rule. We get,
$ \Rightarrow f''(t) = - \dfrac{1}{t}\sin t - \dfrac{1}{{{t^2}}}\cos t - - \dfrac{1}{{{t^2}}}\cos t + \dfrac{2}{{{t^3}}}\sin t$
On simplification we get,
$ \Rightarrow f''(t) = - \dfrac{{\sin t}}{t} - \dfrac{{2\cos t}}{{{t^2}}} + \dfrac{{2\sin t}}{{{t^3}}}$
$ \Rightarrow f''(t) = - \dfrac{{\sin t}}{t} - 2\left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)$
For maximum or minimum value of $f\left( t \right)$, put $f'\left( t \right) = 0$.
$ \Rightarrow \dfrac{{\cos t}}{t} - \dfrac{{\sin t}}{{{t^2}}} = 0$
On simplification we get,
$ \Rightarrow \dfrac{{t\cos t - \sin t}}{{{t^2}}} = 0$
$ \Rightarrow t\cos t - \sin t = 0$
$ \Rightarrow t\cos t = \sin t$
Dividing $\left( {t\cos t} \right)$ on both sides,
$ \Rightarrow 1 = \dfrac{{\sin t}}{{t\cos t}}$
We know that, $\tan t = \dfrac{{\sin t}}{{\cos t}}$
Thus equation becomes,
$ \Rightarrow \dfrac{{\tan t}}{t} = 1$
Now, we will find out $\mathop {\lim }\limits_{t \to 0} f''(t)$,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = \left[ { - \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\sin t}}{t}} \right) - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)} \right]$
From equation (2) the above equation can be simplified.
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)$
When we substitute in place of ‘$t$’ as ‘0’ we get $\left( {\dfrac{0}{0}} \right)$ form. Thus, we need to apply L’Hospital rule i.e., differentiating both numerator and denominator as a separate function we get,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\cos t - t\sin t - \cos t}}{{3{t^2}}}} \right)$
On simplification we get,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{ - t\sin t}}{{3{t^2}}}} \right)$
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 + \dfrac{2}{3}\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\sin t}}{t}} \right)$
Using equation (2) we get,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 + \dfrac{2}{3} \times 1$
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - \dfrac{1}{3} < 0$
Since $ - \dfrac{1}{3}$ is less than zero, we can conclude that the given function $f\left( t \right)$ is maximum at $t = 0$.
Hence, option (d) is the correct answer.
Note: In this type of question you should know how to differentiate the given function and condition to check maximum and minimum.
Complete step-by-step answer:
In this question it is given that,
$f(t) = \dfrac{{\sin t}}{t}$
Now at $t = 0$ we will check continuity of a function $f\left( t \right)$ by finding out the left hand limit $(LHL)$ and right hand limit$\left( {RHL} \right)$.
First, let us find out $(LHL)$ whose formula when $t = 0$ is,
$LHL = f\left( {0 - h} \right)$
Now replace ‘$t$’ by $\left( {0 - h} \right)$ in equation (1) with $\mathop {\lim }\limits_{h \to 0} $, we get,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (0 - h)}}{{(0 - h)}}$
On simplification,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin ( - h)}}{{( - h)}}$
We know that, $\sin ( - h) = - \sin (h)$
So above equation becomes,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{ - \sinh }}{{ - h}}$
On simplification we get,
$ \Rightarrow LHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h}$
We know that, $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$
Thus,
$ \Rightarrow LHL = 1$
Now, for $\left( {RHL} \right)$ we use below formula at $t = 0$
$ \Rightarrow RHL = f(0 + h)$
Using equation (1) replace ‘t’ by $\left( {0 + h} \right)$ and by adding $\mathop {\lim }\limits_{h \to 0} $ we get,
$ \Rightarrow RHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin (0 + h)}}{h}$
On simplification we get,
$ \Rightarrow RHL = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sinh }}{h}$
From equation (2) we get
$ \Rightarrow RHL = 1$
We will now find out $f\left( 0 \right)$, using equation (2)
$ \Rightarrow f(0) = 1$
Thus,
$ \Rightarrow LHL = RHL = f(0)$
If the above condition is satisfied, then we can conclude that the given function is continuous at $t = 0$.
Now, we will check minimum or maximum at a function,
Differentiating $f\left( t \right)$ using product rule,
$\dfrac{d}{{dx}}(u,v) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
We get,
$ \Rightarrow f'(t) = \dfrac{1}{t}\cos t - \dfrac{1}{{{t^2}}}\sin t$
Now, again differentiate (3) with respect to ‘$t$’ using product rule. We get,
$ \Rightarrow f''(t) = - \dfrac{1}{t}\sin t - \dfrac{1}{{{t^2}}}\cos t - - \dfrac{1}{{{t^2}}}\cos t + \dfrac{2}{{{t^3}}}\sin t$
On simplification we get,
$ \Rightarrow f''(t) = - \dfrac{{\sin t}}{t} - \dfrac{{2\cos t}}{{{t^2}}} + \dfrac{{2\sin t}}{{{t^3}}}$
$ \Rightarrow f''(t) = - \dfrac{{\sin t}}{t} - 2\left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)$
For maximum or minimum value of $f\left( t \right)$, put $f'\left( t \right) = 0$.
$ \Rightarrow \dfrac{{\cos t}}{t} - \dfrac{{\sin t}}{{{t^2}}} = 0$
On simplification we get,
$ \Rightarrow \dfrac{{t\cos t - \sin t}}{{{t^2}}} = 0$
$ \Rightarrow t\cos t - \sin t = 0$
$ \Rightarrow t\cos t = \sin t$
Dividing $\left( {t\cos t} \right)$ on both sides,
$ \Rightarrow 1 = \dfrac{{\sin t}}{{t\cos t}}$
We know that, $\tan t = \dfrac{{\sin t}}{{\cos t}}$
Thus equation becomes,
$ \Rightarrow \dfrac{{\tan t}}{t} = 1$
Now, we will find out $\mathop {\lim }\limits_{t \to 0} f''(t)$,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = \left[ { - \mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\sin t}}{t}} \right) - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)} \right]$
From equation (2) the above equation can be simplified.
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{t\cos t - \sin t}}{{{t^3}}}} \right)$
When we substitute in place of ‘$t$’ as ‘0’ we get $\left( {\dfrac{0}{0}} \right)$ form. Thus, we need to apply L’Hospital rule i.e., differentiating both numerator and denominator as a separate function we get,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\cos t - t\sin t - \cos t}}{{3{t^2}}}} \right)$
On simplification we get,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 - 2\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{ - t\sin t}}{{3{t^2}}}} \right)$
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 + \dfrac{2}{3}\mathop {\lim }\limits_{t \to 0} \left( {\dfrac{{\sin t}}{t}} \right)$
Using equation (2) we get,
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - 1 + \dfrac{2}{3} \times 1$
$ \Rightarrow \mathop {\lim }\limits_{t \to 0} f''(t) = - \dfrac{1}{3} < 0$
Since $ - \dfrac{1}{3}$ is less than zero, we can conclude that the given function $f\left( t \right)$ is maximum at $t = 0$.
Hence, option (d) is the correct answer.
Note: In this type of question you should know how to differentiate the given function and condition to check maximum and minimum.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

