
How do you find the composite function $\left( fogoh \right)\left( x \right)$ for $f\left( x \right)=\dfrac{x-2}{2x+1}$, $g\left( x \right)=3x+1$ and $h\left( x \right)={{x}^{2}}$?
Answer
544.2k+ views
Hint: We start solving the problem by using the fact that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$. We then make the necessary calculations and then substitute $g\left( x \right)=3x+1$ in the obtained result to proceed through the problem. We then make the necessary calculations and then substitute $h\left( x \right)={{x}^{2}}$ to proceed further through the problem. We then make the necessary calculations to get the required composite function $\left( fogoh \right)\left( x \right)$.
Complete step by step answer:
According to the problem, we are given $f\left( x \right)=\dfrac{x-2}{2x+1}$, $g\left( x \right)=3x+1$ and $h\left( x \right)={{x}^{2}}$. We need to find the value of $\left( fogoh \right)\left( x \right)$.
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$.
So, we have \[\left( fogoh \right)\left( x \right)=\dfrac{g\left( h\left( x \right) \right)-2}{2\left( g\left( h\left( x \right) \right) \right)+1}\] ---(1).
Let us use $g\left( x \right)=3x+1$ in equation (1).
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)+1-2}{2\left( 3\left( h\left( x \right) \right)+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+3}\] ---(2).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (2) to find the composite function $\left( fogoh \right)\left( x \right)$.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( {{x}^{2}} \right)-1}{6\left( {{x}^{2}} \right)+3}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
So, we have found the composite function $\left( fogoh \right)\left( x \right)$ as \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
$\therefore $ The required composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Note:
We should not confuse $\left( fogoh \right)\left( x \right)$ with $h\left( g\left( f\left( x \right) \right) \right)$ instead of $f\left( g\left( h\left( x \right) \right) \right)$, which is the common mistake done by students. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem as shown below:
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$ ---(3).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (4).
So, we have $\left( fogoh \right)\left( x \right)=f\left( g\left( {{x}^{2}} \right) \right)$ ---(4).
Now, let us find the value of $g\left( {{x}^{2}} \right)$.
So, we have $g\left( {{x}^{2}} \right)=3\left( {{x}^{2}} \right)+1$.
$\Rightarrow g\left( {{x}^{2}} \right)=3{{x}^{2}}+1$ ---(5).
Let us substitute equation (5) in equation (4).
$\Rightarrow \left( fogoh \right)\left( x \right)=f\left( 3{{x}^{2}}+1 \right)$.
Now, let us find $f\left( 3{{x}^{2}}+1 \right)$ to get the required composite function.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{\left( 3{{x}^{2}}+1 \right)-2}{2\left( 3{{x}^{2}}+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}+1-2}{6{{x}^{2}}+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\]
So, the composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Complete step by step answer:
According to the problem, we are given $f\left( x \right)=\dfrac{x-2}{2x+1}$, $g\left( x \right)=3x+1$ and $h\left( x \right)={{x}^{2}}$. We need to find the value of $\left( fogoh \right)\left( x \right)$.
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$.
So, we have \[\left( fogoh \right)\left( x \right)=\dfrac{g\left( h\left( x \right) \right)-2}{2\left( g\left( h\left( x \right) \right) \right)+1}\] ---(1).
Let us use $g\left( x \right)=3x+1$ in equation (1).
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)+1-2}{2\left( 3\left( h\left( x \right) \right)+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+3}\] ---(2).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (2) to find the composite function $\left( fogoh \right)\left( x \right)$.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( {{x}^{2}} \right)-1}{6\left( {{x}^{2}} \right)+3}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
So, we have found the composite function $\left( fogoh \right)\left( x \right)$ as \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
$\therefore $ The required composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Note:
We should not confuse $\left( fogoh \right)\left( x \right)$ with $h\left( g\left( f\left( x \right) \right) \right)$ instead of $f\left( g\left( h\left( x \right) \right) \right)$, which is the common mistake done by students. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem as shown below:
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$ ---(3).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (4).
So, we have $\left( fogoh \right)\left( x \right)=f\left( g\left( {{x}^{2}} \right) \right)$ ---(4).
Now, let us find the value of $g\left( {{x}^{2}} \right)$.
So, we have $g\left( {{x}^{2}} \right)=3\left( {{x}^{2}} \right)+1$.
$\Rightarrow g\left( {{x}^{2}} \right)=3{{x}^{2}}+1$ ---(5).
Let us substitute equation (5) in equation (4).
$\Rightarrow \left( fogoh \right)\left( x \right)=f\left( 3{{x}^{2}}+1 \right)$.
Now, let us find $f\left( 3{{x}^{2}}+1 \right)$ to get the required composite function.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{\left( 3{{x}^{2}}+1 \right)-2}{2\left( 3{{x}^{2}}+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}+1-2}{6{{x}^{2}}+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\]
So, the composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

