
How do you find the composite function $\left( fogoh \right)\left( x \right)$ for $f\left( x \right)=\dfrac{x-2}{2x+1}$, $g\left( x \right)=3x+1$ and $h\left( x \right)={{x}^{2}}$?
Answer
559.5k+ views
Hint: We start solving the problem by using the fact that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$. We then make the necessary calculations and then substitute $g\left( x \right)=3x+1$ in the obtained result to proceed through the problem. We then make the necessary calculations and then substitute $h\left( x \right)={{x}^{2}}$ to proceed further through the problem. We then make the necessary calculations to get the required composite function $\left( fogoh \right)\left( x \right)$.
Complete step by step answer:
According to the problem, we are given $f\left( x \right)=\dfrac{x-2}{2x+1}$, $g\left( x \right)=3x+1$ and $h\left( x \right)={{x}^{2}}$. We need to find the value of $\left( fogoh \right)\left( x \right)$.
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$.
So, we have \[\left( fogoh \right)\left( x \right)=\dfrac{g\left( h\left( x \right) \right)-2}{2\left( g\left( h\left( x \right) \right) \right)+1}\] ---(1).
Let us use $g\left( x \right)=3x+1$ in equation (1).
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)+1-2}{2\left( 3\left( h\left( x \right) \right)+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+3}\] ---(2).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (2) to find the composite function $\left( fogoh \right)\left( x \right)$.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( {{x}^{2}} \right)-1}{6\left( {{x}^{2}} \right)+3}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
So, we have found the composite function $\left( fogoh \right)\left( x \right)$ as \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
$\therefore $ The required composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Note:
We should not confuse $\left( fogoh \right)\left( x \right)$ with $h\left( g\left( f\left( x \right) \right) \right)$ instead of $f\left( g\left( h\left( x \right) \right) \right)$, which is the common mistake done by students. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem as shown below:
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$ ---(3).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (4).
So, we have $\left( fogoh \right)\left( x \right)=f\left( g\left( {{x}^{2}} \right) \right)$ ---(4).
Now, let us find the value of $g\left( {{x}^{2}} \right)$.
So, we have $g\left( {{x}^{2}} \right)=3\left( {{x}^{2}} \right)+1$.
$\Rightarrow g\left( {{x}^{2}} \right)=3{{x}^{2}}+1$ ---(5).
Let us substitute equation (5) in equation (4).
$\Rightarrow \left( fogoh \right)\left( x \right)=f\left( 3{{x}^{2}}+1 \right)$.
Now, let us find $f\left( 3{{x}^{2}}+1 \right)$ to get the required composite function.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{\left( 3{{x}^{2}}+1 \right)-2}{2\left( 3{{x}^{2}}+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}+1-2}{6{{x}^{2}}+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\]
So, the composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Complete step by step answer:
According to the problem, we are given $f\left( x \right)=\dfrac{x-2}{2x+1}$, $g\left( x \right)=3x+1$ and $h\left( x \right)={{x}^{2}}$. We need to find the value of $\left( fogoh \right)\left( x \right)$.
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$.
So, we have \[\left( fogoh \right)\left( x \right)=\dfrac{g\left( h\left( x \right) \right)-2}{2\left( g\left( h\left( x \right) \right) \right)+1}\] ---(1).
Let us use $g\left( x \right)=3x+1$ in equation (1).
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)+1-2}{2\left( 3\left( h\left( x \right) \right)+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( h\left( x \right) \right)-1}{6\left( h\left( x \right) \right)+3}\] ---(2).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (2) to find the composite function $\left( fogoh \right)\left( x \right)$.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3\left( {{x}^{2}} \right)-1}{6\left( {{x}^{2}} \right)+3}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
So, we have found the composite function $\left( fogoh \right)\left( x \right)$ as \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
$\therefore $ The required composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Note:
We should not confuse $\left( fogoh \right)\left( x \right)$ with $h\left( g\left( f\left( x \right) \right) \right)$ instead of $f\left( g\left( h\left( x \right) \right) \right)$, which is the common mistake done by students. We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. We can also solve the given problem as shown below:
We know that $\left( fogoh \right)\left( x \right)=f\left( g\left( h\left( x \right) \right) \right)$ ---(3).
Now, let us substitute $h\left( x \right)={{x}^{2}}$ in equation (4).
So, we have $\left( fogoh \right)\left( x \right)=f\left( g\left( {{x}^{2}} \right) \right)$ ---(4).
Now, let us find the value of $g\left( {{x}^{2}} \right)$.
So, we have $g\left( {{x}^{2}} \right)=3\left( {{x}^{2}} \right)+1$.
$\Rightarrow g\left( {{x}^{2}} \right)=3{{x}^{2}}+1$ ---(5).
Let us substitute equation (5) in equation (4).
$\Rightarrow \left( fogoh \right)\left( x \right)=f\left( 3{{x}^{2}}+1 \right)$.
Now, let us find $f\left( 3{{x}^{2}}+1 \right)$ to get the required composite function.
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{\left( 3{{x}^{2}}+1 \right)-2}{2\left( 3{{x}^{2}}+1 \right)+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}+1-2}{6{{x}^{2}}+2+1}\].
\[\Rightarrow \left( fogoh \right)\left( x \right)=\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\]
So, the composite function $\left( fogoh \right)\left( x \right)$ is \[\dfrac{3{{x}^{2}}-1}{6{{x}^{2}}+3}\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

