
Find the complex conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\].
Answer
490.2k+ views
Hint: For the conjugate of a complex number the sign of the coefficient of iota changes. We will represent the conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] as \[\overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} \] then we will use the property of conjugate \[\overline {\left( {\dfrac{{a + ib}}{{a - ib}}} \right)} = \dfrac{{\left( {\overline {a + ib} } \right)}}{{\left( {\overline {a - ib} } \right)}}\] to find the conjugate. We will then further simplify it by rationalising to find the simplest form.
Complete step by step answer:
As per the definition of conjugate, we know that for the conjugate of a complex number the sign of the coefficient of iota changes.
If \[a + ib\] is a complex number then its conjugate will be given by changing sign before iota i.e., \[a - ib\] is the conjugate of \[a + ib\], where \[a\] and \[b\] are the real numbers. The conjugate of a complex number is represented by dash and is given by \[\overline {a + ib} = a - ib\].
Given a complex number \[\dfrac{{3 + 2i}}{{1 - i}}\] and we have to find the complex conjugate of this number.
Conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is given as \[\overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} \].
Now using the property of complex number, we know that \[\overline {\left( {\dfrac{{a + ib}}{{a - ib}}} \right)} = \dfrac{{\left( {\overline {a + ib} } \right)}}{{\left( {\overline {a - ib} } \right)}}\]. Using this we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {\overline {3 + 2i} } \right)}}{{\left( {\overline {1 - i} } \right)}}\]
Changing the sign of iota, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}}\]
This conjugate can be further simplified.
Rationalizing the denominator by multiplying \[\left( {1 - i} \right)\] to numerator and denominator of obtained conjugate, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}} \times \dfrac{{1 - i}}{{1 - i}}\]
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {3 - 2i} \right)\left( {1 - i} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 3i - 2i + 2{i^2}}}{{1 - i + i - {i^2}}}\]
On further simplification, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 + 2{i^2} - 5i}}{{1 - {i^2}}}\]
Putting the value of \[{i^2} = - 1\], we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2 - 5i}}{{1 + 1}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{1}{2}\left( {1 - 5i} \right)\]
Therefore, the complex conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is \[\dfrac{{3 - 2i}}{{1 + i}}\] i.e., \[\dfrac{1}{2}\left( {1 - 5i} \right)\].
Note:
We can solve this question using alternative methods as well. In this method first we will convert the given complex number to the simplest form of complex number by rationalisation. The simplest form is a+ib form and then we can find its conjugate.
Complete step by step answer:
As per the definition of conjugate, we know that for the conjugate of a complex number the sign of the coefficient of iota changes.
If \[a + ib\] is a complex number then its conjugate will be given by changing sign before iota i.e., \[a - ib\] is the conjugate of \[a + ib\], where \[a\] and \[b\] are the real numbers. The conjugate of a complex number is represented by dash and is given by \[\overline {a + ib} = a - ib\].
Given a complex number \[\dfrac{{3 + 2i}}{{1 - i}}\] and we have to find the complex conjugate of this number.
Conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is given as \[\overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} \].
Now using the property of complex number, we know that \[\overline {\left( {\dfrac{{a + ib}}{{a - ib}}} \right)} = \dfrac{{\left( {\overline {a + ib} } \right)}}{{\left( {\overline {a - ib} } \right)}}\]. Using this we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {\overline {3 + 2i} } \right)}}{{\left( {\overline {1 - i} } \right)}}\]
Changing the sign of iota, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}}\]
This conjugate can be further simplified.
Rationalizing the denominator by multiplying \[\left( {1 - i} \right)\] to numerator and denominator of obtained conjugate, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}} \times \dfrac{{1 - i}}{{1 - i}}\]
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {3 - 2i} \right)\left( {1 - i} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 3i - 2i + 2{i^2}}}{{1 - i + i - {i^2}}}\]
On further simplification, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 + 2{i^2} - 5i}}{{1 - {i^2}}}\]
Putting the value of \[{i^2} = - 1\], we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2 - 5i}}{{1 + 1}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{1}{2}\left( {1 - 5i} \right)\]
Therefore, the complex conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is \[\dfrac{{3 - 2i}}{{1 + i}}\] i.e., \[\dfrac{1}{2}\left( {1 - 5i} \right)\].
Note:
We can solve this question using alternative methods as well. In this method first we will convert the given complex number to the simplest form of complex number by rationalisation. The simplest form is a+ib form and then we can find its conjugate.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

