
Find the complex conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\].
Answer
475.8k+ views
Hint: For the conjugate of a complex number the sign of the coefficient of iota changes. We will represent the conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] as \[\overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} \] then we will use the property of conjugate \[\overline {\left( {\dfrac{{a + ib}}{{a - ib}}} \right)} = \dfrac{{\left( {\overline {a + ib} } \right)}}{{\left( {\overline {a - ib} } \right)}}\] to find the conjugate. We will then further simplify it by rationalising to find the simplest form.
Complete step by step answer:
As per the definition of conjugate, we know that for the conjugate of a complex number the sign of the coefficient of iota changes.
If \[a + ib\] is a complex number then its conjugate will be given by changing sign before iota i.e., \[a - ib\] is the conjugate of \[a + ib\], where \[a\] and \[b\] are the real numbers. The conjugate of a complex number is represented by dash and is given by \[\overline {a + ib} = a - ib\].
Given a complex number \[\dfrac{{3 + 2i}}{{1 - i}}\] and we have to find the complex conjugate of this number.
Conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is given as \[\overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} \].
Now using the property of complex number, we know that \[\overline {\left( {\dfrac{{a + ib}}{{a - ib}}} \right)} = \dfrac{{\left( {\overline {a + ib} } \right)}}{{\left( {\overline {a - ib} } \right)}}\]. Using this we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {\overline {3 + 2i} } \right)}}{{\left( {\overline {1 - i} } \right)}}\]
Changing the sign of iota, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}}\]
This conjugate can be further simplified.
Rationalizing the denominator by multiplying \[\left( {1 - i} \right)\] to numerator and denominator of obtained conjugate, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}} \times \dfrac{{1 - i}}{{1 - i}}\]
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {3 - 2i} \right)\left( {1 - i} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 3i - 2i + 2{i^2}}}{{1 - i + i - {i^2}}}\]
On further simplification, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 + 2{i^2} - 5i}}{{1 - {i^2}}}\]
Putting the value of \[{i^2} = - 1\], we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2 - 5i}}{{1 + 1}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{1}{2}\left( {1 - 5i} \right)\]
Therefore, the complex conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is \[\dfrac{{3 - 2i}}{{1 + i}}\] i.e., \[\dfrac{1}{2}\left( {1 - 5i} \right)\].
Note:
We can solve this question using alternative methods as well. In this method first we will convert the given complex number to the simplest form of complex number by rationalisation. The simplest form is a+ib form and then we can find its conjugate.
Complete step by step answer:
As per the definition of conjugate, we know that for the conjugate of a complex number the sign of the coefficient of iota changes.
If \[a + ib\] is a complex number then its conjugate will be given by changing sign before iota i.e., \[a - ib\] is the conjugate of \[a + ib\], where \[a\] and \[b\] are the real numbers. The conjugate of a complex number is represented by dash and is given by \[\overline {a + ib} = a - ib\].
Given a complex number \[\dfrac{{3 + 2i}}{{1 - i}}\] and we have to find the complex conjugate of this number.
Conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is given as \[\overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} \].
Now using the property of complex number, we know that \[\overline {\left( {\dfrac{{a + ib}}{{a - ib}}} \right)} = \dfrac{{\left( {\overline {a + ib} } \right)}}{{\left( {\overline {a - ib} } \right)}}\]. Using this we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {\overline {3 + 2i} } \right)}}{{\left( {\overline {1 - i} } \right)}}\]
Changing the sign of iota, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}}\]
This conjugate can be further simplified.
Rationalizing the denominator by multiplying \[\left( {1 - i} \right)\] to numerator and denominator of obtained conjugate, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2i}}{{1 + i}} \times \dfrac{{1 - i}}{{1 - i}}\]
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{\left( {3 - 2i} \right)\left( {1 - i} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 3i - 2i + 2{i^2}}}{{1 - i + i - {i^2}}}\]
On further simplification, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 + 2{i^2} - 5i}}{{1 - {i^2}}}\]
Putting the value of \[{i^2} = - 1\], we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{{3 - 2 - 5i}}{{1 + 1}}\]
On simplifying, we get
\[ \Rightarrow \overline {\left( {\dfrac{{3 + 2i}}{{1 - i}}} \right)} = \dfrac{1}{2}\left( {1 - 5i} \right)\]
Therefore, the complex conjugate of \[\dfrac{{3 + 2i}}{{1 - i}}\] is \[\dfrac{{3 - 2i}}{{1 + i}}\] i.e., \[\dfrac{1}{2}\left( {1 - 5i} \right)\].
Note:
We can solve this question using alternative methods as well. In this method first we will convert the given complex number to the simplest form of complex number by rationalisation. The simplest form is a+ib form and then we can find its conjugate.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

