
Find the common tangents of the circles \[{x^2} + {y^2} = 1\] and\[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\].
Answer
596.4k+ views
Hint: First of all, find the centre and radius of the given circles and find the internal and external centre of similitudes. Then find the pair of transverse common tangents and direct common tangents to the given circles. S, use this concept to reach the solution.
Complete step-by-step answer:
Given circle equations are \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\] and \[{x^2} + {y^2} = 1\]
We know that for the circle equation \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}\] the centre of the circle is \[\left( {h,k} \right)\] and radius of the circle is \[a\].
So, for the circle equation \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\] the centre is \[{C_1}\left( {1,3} \right)\] and radius is \[{r_1} = 2\].
We know that for the circle equation \[{x^2} + {y^2} = {a^2}\] the centre of the circle is \[\left( {0,0} \right)\] and radius of the circle is \[a\].
So, for the circle equation \[{x^2} + {y^2} = 1\] the centre is \[{C_2}\left( {0,0} \right)\] and radius is \[{r_2} = 1\].
We know that the distance between the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is given by \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \].
Now, consider the distance between the centres of the two circles i.e.,
\[{C_1}{C_2} = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {3 - 0} \right)}^2}} = \sqrt {10} \]
As \[{C_1}{C_2} > {r_1} + {r_2} \Rightarrow \sqrt {10} > 2 + 1\], there will be four common tangents to the circles as shown in the below figure:
We know that if a point \[C\] divides the two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] in the ratio \[p:q\] the point \[C\] is given by \[C = \left( {\dfrac{{p{x_2} + q{x_1}}}{{p + q}},\dfrac{{p{y_2} + q{y_1}}}{{p + q}}} \right)\].
So, the internal centre of similitude, \[{A_1}\] divides \[{C_1}{C_2}\] in the ratio \[2:1\] internally is given by
\[
\Rightarrow {A_1} = \left( {\dfrac{{2\left( 1 \right) + 1\left( 0 \right)}}{{2 + 1}},\dfrac{{2\left( 3 \right) + 1\left( 0 \right)}}{{2 + 1}}} \right) \\
\therefore {A_1} = \left( {\dfrac{2}{3},\dfrac{6}{3}} \right) = \left( {\dfrac{2}{3},2} \right) \\
\]
We know that the equation to the pair of transverse common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\]
So, equation to the pair of transverse common tangents at \[\left( {\dfrac{2}{3},2} \right)\] to the circle \[{x^2} + {y^2} = 1\] is
\[
\Rightarrow {\left( {x\left( {\dfrac{2}{3}} \right) + y\left( 2 \right) - 1} \right)^2} = \left( {{{\left( {\dfrac{2}{3}} \right)}^2} + {{\left( 2 \right)}^2} - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow {\left( {\dfrac{{2x}}{3} + 2y - 1} \right)^2} = \left( {\dfrac{4}{9} + 4 - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\]
Opening the terms inside the brackets by using the formula \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\], we have
\[
\Rightarrow {\left( {\dfrac{{2x}}{3}} \right)^2} + \left( {2y} \right) + \left( 1 \right) + 2\left( {\dfrac{{2x}}{3}} \right)\left( {2y} \right) + 2\left( {2y} \right)\left( { - 1} \right) + 2\left( {\dfrac{{2x}}{3}} \right)\left( { - 1} \right) = \left( {\dfrac{4}{9} + 3} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow \dfrac{{4{x^2}}}{9} + 4{y^2} + 1 + \dfrac{{8xy}}{3} - 4y - \dfrac{{4x}}{3} = \left( {\dfrac{{4 + 27}}{9}} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow \dfrac{{4{x^2} + 36{y^2} + 9 + 24xy - 36y - 12x}}{9} = \left( {\dfrac{{31}}{9}} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\]
Cancelling and grouping the common terms, we have
\[
\Rightarrow 4{x^2} + 24xy + 36{y^2} - 36y - 12x + 9 = 31{x^2} + 31{y^2} - 31 \\
\Rightarrow 31{x^2} - 4{x^2} - 24xy + 31{y^2} - 36{y^2} + 12x + 36y - 31 - 9 = 0 \\
\therefore 27{x^2} - 24xy - 5{y^2} + 12x + 36y - 40 = 0 \\
\]
We know that if a point \[C\] divides the two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] in the ratio \[p:q\] the point \[C\] is given by \[C = \left( {\dfrac{{p{x_2} + q{x_1}}}{{p + q}},\dfrac{{p{y_2} + q{y_1}}}{{p + q}}} \right)\].
So, the external centre of similitude, \[{A_2}\] divides \[{C_1}{C_2}\] in the ratio \[2:1\] externally is given by
\[
\Rightarrow {A_2} = \left( {\dfrac{{2\left( 1 \right) - 1\left( 0 \right)}}{{2 - 1}},\dfrac{{2\left( 3 \right) - 1\left( 0 \right)}}{{2 - 1}}} \right) \\
\therefore {A_2} = \left( {2,6} \right) \\
\]
We know that the equation to the pair of direct common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\]
So, equation to the pair of direct common tangents at \[\left( {2,6} \right)\] to the circle \[{x^2} + {y^2} = 1\] is
\[
\Rightarrow {\left( {x\left( 2 \right) + y\left( 6 \right) - 1} \right)^2} = \left( {{{\left( 2 \right)}^2} + {{\left( 6 \right)}^2} - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow {\left( {2x + 6y - 1} \right)^2} = \left( {4 + 36 - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\]
Opening the terms inside the brackets, we have
\[
\Rightarrow 4{x^2} + 36{y^2} + 1 + 2\left( {2x} \right)\left( {6y} \right) + 2\left( {2x} \right)\left( { - 1} \right) + 2\left( {6y} \right)\left( { - 1} \right) = \left( {39} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow 4{x^2} + 36{y^2} + 1 + 24xy - 4x - 12y = 39{x^2} + 39{y^2} - 39 \\
\Rightarrow 39{x^2} - 4{x^2} + 39{y^2} - 36{y^2} - 24xy + 4x + 12y - 39 - 1 = 0 \\
\therefore 35{x^2} - 24xy + 3{y^2} + 4x + 12y - 40 = 0 \\
\]
Thus, the common tangents are \[27{x^2} - 24xy - 5{y^2} + 12x + 36y - 40 = 0\] and \[35{x^2} - 24xy + 3{y^2} + 4x + 12y - 40 = 0\].
Note: The equation to the pair of transverse common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\]. The equation to the pair of direct common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\].
Complete step-by-step answer:
Given circle equations are \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\] and \[{x^2} + {y^2} = 1\]
We know that for the circle equation \[{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}\] the centre of the circle is \[\left( {h,k} \right)\] and radius of the circle is \[a\].
So, for the circle equation \[{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 4\] the centre is \[{C_1}\left( {1,3} \right)\] and radius is \[{r_1} = 2\].
We know that for the circle equation \[{x^2} + {y^2} = {a^2}\] the centre of the circle is \[\left( {0,0} \right)\] and radius of the circle is \[a\].
So, for the circle equation \[{x^2} + {y^2} = 1\] the centre is \[{C_2}\left( {0,0} \right)\] and radius is \[{r_2} = 1\].
We know that the distance between the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] is given by \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \].
Now, consider the distance between the centres of the two circles i.e.,
\[{C_1}{C_2} = \sqrt {{{\left( {1 - 0} \right)}^2} + {{\left( {3 - 0} \right)}^2}} = \sqrt {10} \]
As \[{C_1}{C_2} > {r_1} + {r_2} \Rightarrow \sqrt {10} > 2 + 1\], there will be four common tangents to the circles as shown in the below figure:
We know that if a point \[C\] divides the two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] in the ratio \[p:q\] the point \[C\] is given by \[C = \left( {\dfrac{{p{x_2} + q{x_1}}}{{p + q}},\dfrac{{p{y_2} + q{y_1}}}{{p + q}}} \right)\].
So, the internal centre of similitude, \[{A_1}\] divides \[{C_1}{C_2}\] in the ratio \[2:1\] internally is given by
\[
\Rightarrow {A_1} = \left( {\dfrac{{2\left( 1 \right) + 1\left( 0 \right)}}{{2 + 1}},\dfrac{{2\left( 3 \right) + 1\left( 0 \right)}}{{2 + 1}}} \right) \\
\therefore {A_1} = \left( {\dfrac{2}{3},\dfrac{6}{3}} \right) = \left( {\dfrac{2}{3},2} \right) \\
\]
We know that the equation to the pair of transverse common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\]
So, equation to the pair of transverse common tangents at \[\left( {\dfrac{2}{3},2} \right)\] to the circle \[{x^2} + {y^2} = 1\] is
\[
\Rightarrow {\left( {x\left( {\dfrac{2}{3}} \right) + y\left( 2 \right) - 1} \right)^2} = \left( {{{\left( {\dfrac{2}{3}} \right)}^2} + {{\left( 2 \right)}^2} - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow {\left( {\dfrac{{2x}}{3} + 2y - 1} \right)^2} = \left( {\dfrac{4}{9} + 4 - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\]
Opening the terms inside the brackets by using the formula \[{\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca\], we have
\[
\Rightarrow {\left( {\dfrac{{2x}}{3}} \right)^2} + \left( {2y} \right) + \left( 1 \right) + 2\left( {\dfrac{{2x}}{3}} \right)\left( {2y} \right) + 2\left( {2y} \right)\left( { - 1} \right) + 2\left( {\dfrac{{2x}}{3}} \right)\left( { - 1} \right) = \left( {\dfrac{4}{9} + 3} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow \dfrac{{4{x^2}}}{9} + 4{y^2} + 1 + \dfrac{{8xy}}{3} - 4y - \dfrac{{4x}}{3} = \left( {\dfrac{{4 + 27}}{9}} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow \dfrac{{4{x^2} + 36{y^2} + 9 + 24xy - 36y - 12x}}{9} = \left( {\dfrac{{31}}{9}} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\]
Cancelling and grouping the common terms, we have
\[
\Rightarrow 4{x^2} + 24xy + 36{y^2} - 36y - 12x + 9 = 31{x^2} + 31{y^2} - 31 \\
\Rightarrow 31{x^2} - 4{x^2} - 24xy + 31{y^2} - 36{y^2} + 12x + 36y - 31 - 9 = 0 \\
\therefore 27{x^2} - 24xy - 5{y^2} + 12x + 36y - 40 = 0 \\
\]
We know that if a point \[C\] divides the two points \[A\left( {{x_1},{y_1}} \right)\] and \[B\left( {{x_2},{y_2}} \right)\] in the ratio \[p:q\] the point \[C\] is given by \[C = \left( {\dfrac{{p{x_2} + q{x_1}}}{{p + q}},\dfrac{{p{y_2} + q{y_1}}}{{p + q}}} \right)\].
So, the external centre of similitude, \[{A_2}\] divides \[{C_1}{C_2}\] in the ratio \[2:1\] externally is given by
\[
\Rightarrow {A_2} = \left( {\dfrac{{2\left( 1 \right) - 1\left( 0 \right)}}{{2 - 1}},\dfrac{{2\left( 3 \right) - 1\left( 0 \right)}}{{2 - 1}}} \right) \\
\therefore {A_2} = \left( {2,6} \right) \\
\]
We know that the equation to the pair of direct common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\]
So, equation to the pair of direct common tangents at \[\left( {2,6} \right)\] to the circle \[{x^2} + {y^2} = 1\] is
\[
\Rightarrow {\left( {x\left( 2 \right) + y\left( 6 \right) - 1} \right)^2} = \left( {{{\left( 2 \right)}^2} + {{\left( 6 \right)}^2} - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow {\left( {2x + 6y - 1} \right)^2} = \left( {4 + 36 - 1} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\]
Opening the terms inside the brackets, we have
\[
\Rightarrow 4{x^2} + 36{y^2} + 1 + 2\left( {2x} \right)\left( {6y} \right) + 2\left( {2x} \right)\left( { - 1} \right) + 2\left( {6y} \right)\left( { - 1} \right) = \left( {39} \right)\left( {{x^2} + {y^2} - 1} \right) \\
\Rightarrow 4{x^2} + 36{y^2} + 1 + 24xy - 4x - 12y = 39{x^2} + 39{y^2} - 39 \\
\Rightarrow 39{x^2} - 4{x^2} + 39{y^2} - 36{y^2} - 24xy + 4x + 12y - 39 - 1 = 0 \\
\therefore 35{x^2} - 24xy + 3{y^2} + 4x + 12y - 40 = 0 \\
\]
Thus, the common tangents are \[27{x^2} - 24xy - 5{y^2} + 12x + 36y - 40 = 0\] and \[35{x^2} - 24xy + 3{y^2} + 4x + 12y - 40 = 0\].
Note: The equation to the pair of transverse common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\]. The equation to the pair of direct common tangents at point \[\left( {h,k} \right)\] to the circle \[{x^2} + {y^2} = {a^2}\] is given by \[{\left( {xh + yk - {a^2}} \right)^2} = \left( {{h^2} + {k^2} - {a^2}} \right)\left( {{x^2} + {y^2} - {a^2}} \right)\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

