
Find the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$ is
A) $\dfrac{{1 - k - {k^2}}}{{k!}}$
B) $\dfrac{{{k^2} + 1}}{{k!}}$
C) \[\dfrac{1}{{k!}}\]
D) $\dfrac{{1 - k}}{{k!}}$
Answer
495.3k+ views
Hint: Expansion of a product of sums expressed as a sum of products by using the fact that multiplication distributes over the addition. First we calculate the expansion and then find the required answer. We know the expansion of the given term and we put this in the given data and we get the required answer.
Complete step by step answer:
First the collect the given data $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$
$ = (1 - 2x - {x^2}){e^x}$
Now we find the expansion of ${e^x}$
\[\therefore {e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......\]
Therefore we multiply with the given data and we get
$(1 - 2x - {x^2})\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......} \right)$
Now multiply the above polynomial and find the coefficient of ${x^k}$ th term
$\therefore $ The coefficient of ${x^k}$ is $\dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Now calculate this coefficient term and we get
$ = \dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Multiplying $k$ in numerator and denominator of the second term and $k(k - 1)$ in numerator and denominator of the third term , we get
$ = \dfrac{1}{{k!}} - \dfrac{{2 \times k}}{{k \times (k - 1)!}} - \dfrac{{1 \times k \times (k - 1)}}{{k \times (k - 1) \times (k - 2)!}}$
\[ = \dfrac{1}{{k!}} - \dfrac{{2k}}{{k!}} - \dfrac{{{k^2} - k}}{{k!}}\]
We take the $lcm\left( {k!,k!,k!} \right) = k!$ and calculate we get
$ = \dfrac{{1 - 2k - {k^2} + k}}{{k!}}$
$ = \dfrac{{1 - k - {k^2}}}{{k!}}$
Therefore, the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}=\dfrac{{1 - k - {k^2}}}{{k!}}$. So, option (A) is correct.
Note:
We take care when we multiply these , we know ${x^a} \times {x^b} = {x^{a + b}}$ , therefore we take only those coefficients whose functions given ${x^k}$ . i.e., we take the $\dfrac{{{x^{k - 2}}}}{{(k - 2)!}}$ because ${x^{k - 2}} \times {x^2} = {x^{k - 2 + 2}} = {x^k}$ , we take $\dfrac{{{x^{k - 1}}}}{{(k - 1)!}}$ because ${x^{k - 1}} \times x = {x^{k - 1 + 1}} = {x^k}$ and we take $\dfrac{{{x^k}}}{{k!}}$ and take sum of them .
Complete step by step answer:
First the collect the given data $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$
$ = (1 - 2x - {x^2}){e^x}$
Now we find the expansion of ${e^x}$
\[\therefore {e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......\]
Therefore we multiply with the given data and we get
$(1 - 2x - {x^2})\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......} \right)$
Now multiply the above polynomial and find the coefficient of ${x^k}$ th term
$\therefore $ The coefficient of ${x^k}$ is $\dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Now calculate this coefficient term and we get
$ = \dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Multiplying $k$ in numerator and denominator of the second term and $k(k - 1)$ in numerator and denominator of the third term , we get
$ = \dfrac{1}{{k!}} - \dfrac{{2 \times k}}{{k \times (k - 1)!}} - \dfrac{{1 \times k \times (k - 1)}}{{k \times (k - 1) \times (k - 2)!}}$
\[ = \dfrac{1}{{k!}} - \dfrac{{2k}}{{k!}} - \dfrac{{{k^2} - k}}{{k!}}\]
We take the $lcm\left( {k!,k!,k!} \right) = k!$ and calculate we get
$ = \dfrac{{1 - 2k - {k^2} + k}}{{k!}}$
$ = \dfrac{{1 - k - {k^2}}}{{k!}}$
Therefore, the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}=\dfrac{{1 - k - {k^2}}}{{k!}}$. So, option (A) is correct.
Note:
We take care when we multiply these , we know ${x^a} \times {x^b} = {x^{a + b}}$ , therefore we take only those coefficients whose functions given ${x^k}$ . i.e., we take the $\dfrac{{{x^{k - 2}}}}{{(k - 2)!}}$ because ${x^{k - 2}} \times {x^2} = {x^{k - 2 + 2}} = {x^k}$ , we take $\dfrac{{{x^{k - 1}}}}{{(k - 1)!}}$ because ${x^{k - 1}} \times x = {x^{k - 1 + 1}} = {x^k}$ and we take $\dfrac{{{x^k}}}{{k!}}$ and take sum of them .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

