
Find the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$ is
A) $\dfrac{{1 - k - {k^2}}}{{k!}}$
B) $\dfrac{{{k^2} + 1}}{{k!}}$
C) \[\dfrac{1}{{k!}}\]
D) $\dfrac{{1 - k}}{{k!}}$
Answer
510k+ views
Hint: Expansion of a product of sums expressed as a sum of products by using the fact that multiplication distributes over the addition. First we calculate the expansion and then find the required answer. We know the expansion of the given term and we put this in the given data and we get the required answer.
Complete step by step answer:
First the collect the given data $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$
$ = (1 - 2x - {x^2}){e^x}$
Now we find the expansion of ${e^x}$
\[\therefore {e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......\]
Therefore we multiply with the given data and we get
$(1 - 2x - {x^2})\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......} \right)$
Now multiply the above polynomial and find the coefficient of ${x^k}$ th term
$\therefore $ The coefficient of ${x^k}$ is $\dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Now calculate this coefficient term and we get
$ = \dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Multiplying $k$ in numerator and denominator of the second term and $k(k - 1)$ in numerator and denominator of the third term , we get
$ = \dfrac{1}{{k!}} - \dfrac{{2 \times k}}{{k \times (k - 1)!}} - \dfrac{{1 \times k \times (k - 1)}}{{k \times (k - 1) \times (k - 2)!}}$
\[ = \dfrac{1}{{k!}} - \dfrac{{2k}}{{k!}} - \dfrac{{{k^2} - k}}{{k!}}\]
We take the $lcm\left( {k!,k!,k!} \right) = k!$ and calculate we get
$ = \dfrac{{1 - 2k - {k^2} + k}}{{k!}}$
$ = \dfrac{{1 - k - {k^2}}}{{k!}}$
Therefore, the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}=\dfrac{{1 - k - {k^2}}}{{k!}}$. So, option (A) is correct.
Note:
We take care when we multiply these , we know ${x^a} \times {x^b} = {x^{a + b}}$ , therefore we take only those coefficients whose functions given ${x^k}$ . i.e., we take the $\dfrac{{{x^{k - 2}}}}{{(k - 2)!}}$ because ${x^{k - 2}} \times {x^2} = {x^{k - 2 + 2}} = {x^k}$ , we take $\dfrac{{{x^{k - 1}}}}{{(k - 1)!}}$ because ${x^{k - 1}} \times x = {x^{k - 1 + 1}} = {x^k}$ and we take $\dfrac{{{x^k}}}{{k!}}$ and take sum of them .
Complete step by step answer:
First the collect the given data $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$
$ = (1 - 2x - {x^2}){e^x}$
Now we find the expansion of ${e^x}$
\[\therefore {e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......\]
Therefore we multiply with the given data and we get
$(1 - 2x - {x^2})\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......} \right)$
Now multiply the above polynomial and find the coefficient of ${x^k}$ th term
$\therefore $ The coefficient of ${x^k}$ is $\dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Now calculate this coefficient term and we get
$ = \dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Multiplying $k$ in numerator and denominator of the second term and $k(k - 1)$ in numerator and denominator of the third term , we get
$ = \dfrac{1}{{k!}} - \dfrac{{2 \times k}}{{k \times (k - 1)!}} - \dfrac{{1 \times k \times (k - 1)}}{{k \times (k - 1) \times (k - 2)!}}$
\[ = \dfrac{1}{{k!}} - \dfrac{{2k}}{{k!}} - \dfrac{{{k^2} - k}}{{k!}}\]
We take the $lcm\left( {k!,k!,k!} \right) = k!$ and calculate we get
$ = \dfrac{{1 - 2k - {k^2} + k}}{{k!}}$
$ = \dfrac{{1 - k - {k^2}}}{{k!}}$
Therefore, the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}=\dfrac{{1 - k - {k^2}}}{{k!}}$. So, option (A) is correct.
Note:
We take care when we multiply these , we know ${x^a} \times {x^b} = {x^{a + b}}$ , therefore we take only those coefficients whose functions given ${x^k}$ . i.e., we take the $\dfrac{{{x^{k - 2}}}}{{(k - 2)!}}$ because ${x^{k - 2}} \times {x^2} = {x^{k - 2 + 2}} = {x^k}$ , we take $\dfrac{{{x^{k - 1}}}}{{(k - 1)!}}$ because ${x^{k - 1}} \times x = {x^{k - 1 + 1}} = {x^k}$ and we take $\dfrac{{{x^k}}}{{k!}}$ and take sum of them .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

