
Find the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$ is
A) $\dfrac{{1 - k - {k^2}}}{{k!}}$
B) $\dfrac{{{k^2} + 1}}{{k!}}$
C) \[\dfrac{1}{{k!}}\]
D) $\dfrac{{1 - k}}{{k!}}$
Answer
410.7k+ views
Hint: Expansion of a product of sums expressed as a sum of products by using the fact that multiplication distributes over the addition. First we calculate the expansion and then find the required answer. We know the expansion of the given term and we put this in the given data and we get the required answer.
Complete step by step answer:
First the collect the given data $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$
$ = (1 - 2x - {x^2}){e^x}$
Now we find the expansion of ${e^x}$
\[\therefore {e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......\]
Therefore we multiply with the given data and we get
$(1 - 2x - {x^2})\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......} \right)$
Now multiply the above polynomial and find the coefficient of ${x^k}$ th term
$\therefore $ The coefficient of ${x^k}$ is $\dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Now calculate this coefficient term and we get
$ = \dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Multiplying $k$ in numerator and denominator of the second term and $k(k - 1)$ in numerator and denominator of the third term , we get
$ = \dfrac{1}{{k!}} - \dfrac{{2 \times k}}{{k \times (k - 1)!}} - \dfrac{{1 \times k \times (k - 1)}}{{k \times (k - 1) \times (k - 2)!}}$
\[ = \dfrac{1}{{k!}} - \dfrac{{2k}}{{k!}} - \dfrac{{{k^2} - k}}{{k!}}\]
We take the $lcm\left( {k!,k!,k!} \right) = k!$ and calculate we get
$ = \dfrac{{1 - 2k - {k^2} + k}}{{k!}}$
$ = \dfrac{{1 - k - {k^2}}}{{k!}}$
Therefore, the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}=\dfrac{{1 - k - {k^2}}}{{k!}}$. So, option (A) is correct.
Note:
We take care when we multiply these , we know ${x^a} \times {x^b} = {x^{a + b}}$ , therefore we take only those coefficients whose functions given ${x^k}$ . i.e., we take the $\dfrac{{{x^{k - 2}}}}{{(k - 2)!}}$ because ${x^{k - 2}} \times {x^2} = {x^{k - 2 + 2}} = {x^k}$ , we take $\dfrac{{{x^{k - 1}}}}{{(k - 1)!}}$ because ${x^{k - 1}} \times x = {x^{k - 1 + 1}} = {x^k}$ and we take $\dfrac{{{x^k}}}{{k!}}$ and take sum of them .
Complete step by step answer:
First the collect the given data $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}$
$ = (1 - 2x - {x^2}){e^x}$
Now we find the expansion of ${e^x}$
\[\therefore {e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......\]
Therefore we multiply with the given data and we get
$(1 - 2x - {x^2})\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^{k - 2}}}}{{(k - 2)!}} + \dfrac{{{x^{k - 1}}}}{{(k - 1)!}} + \dfrac{{{x^k}}}{{k!}} + ......} \right)$
Now multiply the above polynomial and find the coefficient of ${x^k}$ th term
$\therefore $ The coefficient of ${x^k}$ is $\dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Now calculate this coefficient term and we get
$ = \dfrac{1}{{k!}} - \dfrac{2}{{(k - 1)!}} - \dfrac{1}{{(k - 2)!}}$
Multiplying $k$ in numerator and denominator of the second term and $k(k - 1)$ in numerator and denominator of the third term , we get
$ = \dfrac{1}{{k!}} - \dfrac{{2 \times k}}{{k \times (k - 1)!}} - \dfrac{{1 \times k \times (k - 1)}}{{k \times (k - 1) \times (k - 2)!}}$
\[ = \dfrac{1}{{k!}} - \dfrac{{2k}}{{k!}} - \dfrac{{{k^2} - k}}{{k!}}\]
We take the $lcm\left( {k!,k!,k!} \right) = k!$ and calculate we get
$ = \dfrac{{1 - 2k - {k^2} + k}}{{k!}}$
$ = \dfrac{{1 - k - {k^2}}}{{k!}}$
Therefore, the coefficients of ${x^k}$ in the expansion of $\dfrac{{1 - 2x - {x^2}}}{{{e^{ - x}}}}=\dfrac{{1 - k - {k^2}}}{{k!}}$. So, option (A) is correct.
Note:
We take care when we multiply these , we know ${x^a} \times {x^b} = {x^{a + b}}$ , therefore we take only those coefficients whose functions given ${x^k}$ . i.e., we take the $\dfrac{{{x^{k - 2}}}}{{(k - 2)!}}$ because ${x^{k - 2}} \times {x^2} = {x^{k - 2 + 2}} = {x^k}$ , we take $\dfrac{{{x^{k - 1}}}}{{(k - 1)!}}$ because ${x^{k - 1}} \times x = {x^{k - 1 + 1}} = {x^k}$ and we take $\dfrac{{{x^k}}}{{k!}}$ and take sum of them .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
