
Find the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ ?
(a) $ {{\left( -1 \right)}^{n-1}}n $
(b) $ {{\left( -1 \right)}^{n}}\left( 1-n \right) $
(c) $ {{\left( -1 \right)}^{n-1}}{{\left( n-2 \right)}^{2}} $
(d) $ \left( n-1 \right) $
Answer
551.4k+ views
Hint: We start solving the problem by expanding the given multiplication and then find the terms for which we need to find the coefficient. We then recall the fact that the coefficient of $ {{x}^{r}} $ in the binomial expansion of $ {{\left( a+bx \right)}^{n}} $ , $ \left( n\ge r \right) $ as $ {}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} $ to find the coefficients of required terms. We then add those obtained coefficients and make the necessary calculations to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ .
Now, we have $ \left( 1+x \right){{\left( 1-x \right)}^{n}}={{\left( 1-x \right)}^{n}}+x{{\left( 1-x \right)}^{n}} $ ---(1).
In order to find the coefficient of $ {{x}^{n}} $ for the expansion in equation (1), We need to find the coefficient of $ {{x}^{n}} $ for $ {{\left( 1-x \right)}^{n}} $ and $ {{x}^{n-1}} $ for $ {{\left( 1-x \right)}^{n}} $ to get required coefficient in $ x{{\left( 1-x \right)}^{n}} $ .
Let us recall the coefficient of $ {{x}^{r}} $ in the binomial expansion of $ {{\left( a+bx \right)}^{n}} $ , $ \left( n\ge r \right) $ as $ {}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} $ .
Now, the co-efficient of $ {{x}^{n}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}{{\left( -1 \right)}^{n}} $ .
We know that $ {}^{n}{{C}_{n}}=1 $ . So, the co-efficient of $ {{x}^{n}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {{\left( -1 \right)}^{n}} $ ---(2).
Now, the co-efficient of $ {{x}^{n-1}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {}^{n}{{C}_{n-1}}{{\left( 1 \right)}^{n-n+1}}{{\left( -1 \right)}^{n-1}} $ .
We know that $ {}^{n}{{C}_{n-1}}=n $ . So, the co-efficient of $ {{x}^{n-1}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {{\left( -1 \right)}^{n-1}}n $ ---(3).
Let us use the results obtained in equations (2) and (3) to get the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ .
So, the required co-efficient is $ {{\left( -1 \right)}^{n}}+{{\left( -1 \right)}^{n-1}}n={{\left( -1 \right)}^{n}}+\dfrac{{{\left( -1 \right)}^{n}}}{\left( -1 \right)}n={{\left( -1 \right)}^{n}}\left( 1-n \right) $ .
We have found the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ as $ {{\left( -1 \right)}^{n}}\left( 1-n \right) $ .
$\therefore$ The correct option for the given problem is (b).
Note:
We should not confuse while finding the binomial coefficients of required terms in this problem. Whenever we get this type of problem, we first try to find the required terms whose coefficients we need to find for solving the problem. Similarly, we can expect problems to find the coefficient of $ {{x}^{n}} $ in the binomial expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{-n}} $ .
Complete step by step answer:
According to the problem, we are asked to find the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ .
Now, we have $ \left( 1+x \right){{\left( 1-x \right)}^{n}}={{\left( 1-x \right)}^{n}}+x{{\left( 1-x \right)}^{n}} $ ---(1).
In order to find the coefficient of $ {{x}^{n}} $ for the expansion in equation (1), We need to find the coefficient of $ {{x}^{n}} $ for $ {{\left( 1-x \right)}^{n}} $ and $ {{x}^{n-1}} $ for $ {{\left( 1-x \right)}^{n}} $ to get required coefficient in $ x{{\left( 1-x \right)}^{n}} $ .
Let us recall the coefficient of $ {{x}^{r}} $ in the binomial expansion of $ {{\left( a+bx \right)}^{n}} $ , $ \left( n\ge r \right) $ as $ {}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} $ .
Now, the co-efficient of $ {{x}^{n}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {}^{n}{{C}_{n}}{{\left( 1 \right)}^{n-n}}{{\left( -1 \right)}^{n}} $ .
We know that $ {}^{n}{{C}_{n}}=1 $ . So, the co-efficient of $ {{x}^{n}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {{\left( -1 \right)}^{n}} $ ---(2).
Now, the co-efficient of $ {{x}^{n-1}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {}^{n}{{C}_{n-1}}{{\left( 1 \right)}^{n-n+1}}{{\left( -1 \right)}^{n-1}} $ .
We know that $ {}^{n}{{C}_{n-1}}=n $ . So, the co-efficient of $ {{x}^{n-1}} $ in the expansion of $ {{\left( 1-x \right)}^{n}} $ is $ {{\left( -1 \right)}^{n-1}}n $ ---(3).
Let us use the results obtained in equations (2) and (3) to get the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ .
So, the required co-efficient is $ {{\left( -1 \right)}^{n}}+{{\left( -1 \right)}^{n-1}}n={{\left( -1 \right)}^{n}}+\dfrac{{{\left( -1 \right)}^{n}}}{\left( -1 \right)}n={{\left( -1 \right)}^{n}}\left( 1-n \right) $ .
We have found the coefficient of $ {{x}^{n}} $ in the expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{n}} $ as $ {{\left( -1 \right)}^{n}}\left( 1-n \right) $ .
$\therefore$ The correct option for the given problem is (b).
Note:
We should not confuse while finding the binomial coefficients of required terms in this problem. Whenever we get this type of problem, we first try to find the required terms whose coefficients we need to find for solving the problem. Similarly, we can expect problems to find the coefficient of $ {{x}^{n}} $ in the binomial expansion of $ \left( 1+x \right){{\left( 1-x \right)}^{-n}} $ .
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

