
Find the coefficient of ${{x}^{n}}\text{ in }\dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}.$
(a) $12-30\cdot {{2}^{n}}-20\cdot {{3}^{n}}$
(b) $12-30\cdot {{2}^{n}}+20\cdot {{3}^{n}}$
(c) $12+30\cdot {{2}^{n}}+20\cdot {{3}^{n}}$
(d) $12+30\cdot {{2}^{n}}-20\cdot {{3}^{n}}$
Answer
531.6k+ views
Hint: We must calculate the partial fraction of the denominator and then use the binomial theorem expansion to expand the expression. We then have to sort out the terms containing ${{x}^{n}}$ and simplify it further to get the required result.
Complete step-by-step solution:
We need to find the coefficient of ${{x}^{n}}$ , so it is clear that we need to use the Binomial theorem.
Let us first focus on the denominator term, and find its partial fraction.
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{A}{1-x}+\dfrac{B}{1-2x}+\dfrac{C}{1-3x}$
We now need to find the values of A, B and C.
So, let us solve the RHS part,
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{A\left( 1-5x+{{x}^{2}} \right)+B\left( 1-4x+3{{x}^{2}} \right)+C\left( 1-3x+2{{x}^{2}} \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}$
We can rearrange the terms on RHS, to get
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{{{x}^{2}}\left( 6A+3B+2C \right)+x\left( -5A-4B-3C \right)+\left( A+B+C \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}$
On comparing LHS and RHS, we get
$\begin{align}
& 6A+3B+2C=0 \\
& -5A-4B-3C=0 \\
& A+B+C=1 \\
\end{align}$
On solving, these equations simultaneously, we get
$A=\dfrac{1}{2},B=-4,C=\dfrac{9}{2}$
Thus, we now have
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{1}{2\left( 1-x \right)}-\dfrac{4}{\left( 1-2x \right)}+\dfrac{9}{2\left( 1-3x \right)}$
Let us now include the numerator term,
$\dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)\left[ \dfrac{1}{2\left( 1-x \right)}-\dfrac{4}{\left( 1-2x \right)}+\dfrac{9}{2\left( 1-3x \right)} \right]$
On multiplying the factors, we get
$\dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\left( 6{{x}^{3}}+11{{x}^{2}}+6x+1 \right)\left[ \dfrac{1}{2\left( 1-x \right)}-\dfrac{4}{\left( 1-2x \right)}+\dfrac{9}{2\left( 1-3x \right)} \right]$
From Binomial theorem, we know the following expansions
$\begin{align}
& \dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+... \\
& \dfrac{1}{1-2x}=1+2x+{{\left( 2x \right)}^{2}}+{{\left( 2x \right)}^{3}}+... \\
& \dfrac{1}{1-3x}=1+3x+{{\left( 3x \right)}^{2}}+{{\left( 3x \right)}^{3}}+... \\
\end{align}$
Using these expansions in the RHS part of our equation, we get the following result
$\begin{align}
& \dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}= \\
& \left( 6{{x}^{3}}+11{{x}^{2}}+6x+1 \right)\left[ \dfrac{1}{2}\left( 1+x+{{x}^{2}}+{{x}^{3}}+... \right)-4\left( 1+2x+{{\left( 2x \right)}^{2}}+{{\left( 2x \right)}^{3}}+... \right)+\dfrac{9}{2}\left( 1+3x+{{\left( 3x \right)}^{2}}+{{\left( 3x \right)}^{3}}+... \right) \right] \\
\end{align}$
We are only concerned about the coefficient of ${{x}^{n}}$ term. So, we can neglect all other terms and focus on just the term with ${{x}^{n}}$.
\[\begin{align}
& \text{Terms with }{{x}^{n}}=\dfrac{1}{2}\left[ 6{{x}^{n}}+11{{x}^{n}}+6{{x}^{n}}+{{x}^{n}} \right]-4\left[ 6\cdot {{2}^{n-3}}{{x}^{n}}+11\cdot {{2}^{n-2}}{{x}^{n}}+6\cdot {{2}^{n-1}}{{x}^{n}}+{{2}^{n}}{{x}^{n}} \right] \\
& +\dfrac{9}{2}\left[ 6\cdot {{3}^{n-3}}{{x}^{n}}+11\cdot {{3}^{n-2}}{{x}^{n}}+6\cdot {{3}^{n-1}}{{x}^{n}}+{{3}^{n}}{{x}^{n}} \right] \\
\end{align}\]
Hence, the coefficient of ${{x}^{n}}$ is = \[\dfrac{1}{2}\left[ 6+11+6+1 \right]-4\left[ 6\cdot {{2}^{n-3}}+11\cdot {{2}^{n-2}}+6\cdot {{2}^{n-1}}+{{2}^{n}} \right]+\dfrac{9}{2}\left[ 6\cdot {{3}^{n-3}}+11\cdot {{3}^{n-2}}+6\cdot {{3}^{n-1}}+{{3}^{n}} \right]\]
We can further solve the above equation as
Coefficient = \[12-24\cdot {{2}^{n-3}}-44\cdot {{2}^{n-2}}-24\cdot {{2}^{n-1}}-4\cdot {{2}^{n}}+27\cdot {{3}^{n-3}}+\dfrac{99}{2}\cdot {{3}^{n-2}}+27\cdot {{3}^{n-1}}+\dfrac{9}{2}{{3}^{n}}\]
This can further be reduced as
Coefficient = \[12-3\cdot {{2}^{n}}-11\cdot {{2}^{n}}-12\cdot {{2}^{n}}-4\cdot {{2}^{n}}+{{3}^{n}}+\dfrac{11}{2}\cdot {{3}^{n}}+9\cdot {{3}^{n}}+\dfrac{9}{2}{{3}^{n}}\]
Hence, we can now clearly write
Coefficient = $12-30\cdot {{2}^{n}}+20\cdot {{3}^{n}}$
Hence, option (b) is the correct answer.
Note: We must be very careful while solving this problem, as it has some very complicated terms, and has a high chance of calculation mistake. We must use the correct expansions for all terms. And we must not miss any term while calculating the coefficient.
Complete step-by-step solution:
We need to find the coefficient of ${{x}^{n}}$ , so it is clear that we need to use the Binomial theorem.
Let us first focus on the denominator term, and find its partial fraction.
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{A}{1-x}+\dfrac{B}{1-2x}+\dfrac{C}{1-3x}$
We now need to find the values of A, B and C.
So, let us solve the RHS part,
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{A\left( 1-5x+{{x}^{2}} \right)+B\left( 1-4x+3{{x}^{2}} \right)+C\left( 1-3x+2{{x}^{2}} \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}$
We can rearrange the terms on RHS, to get
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{{{x}^{2}}\left( 6A+3B+2C \right)+x\left( -5A-4B-3C \right)+\left( A+B+C \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}$
On comparing LHS and RHS, we get
$\begin{align}
& 6A+3B+2C=0 \\
& -5A-4B-3C=0 \\
& A+B+C=1 \\
\end{align}$
On solving, these equations simultaneously, we get
$A=\dfrac{1}{2},B=-4,C=\dfrac{9}{2}$
Thus, we now have
$\dfrac{1}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\dfrac{1}{2\left( 1-x \right)}-\dfrac{4}{\left( 1-2x \right)}+\dfrac{9}{2\left( 1-3x \right)}$
Let us now include the numerator term,
$\dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)\left[ \dfrac{1}{2\left( 1-x \right)}-\dfrac{4}{\left( 1-2x \right)}+\dfrac{9}{2\left( 1-3x \right)} \right]$
On multiplying the factors, we get
$\dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}=\left( 6{{x}^{3}}+11{{x}^{2}}+6x+1 \right)\left[ \dfrac{1}{2\left( 1-x \right)}-\dfrac{4}{\left( 1-2x \right)}+\dfrac{9}{2\left( 1-3x \right)} \right]$
From Binomial theorem, we know the following expansions
$\begin{align}
& \dfrac{1}{1-x}=1+x+{{x}^{2}}+{{x}^{3}}+... \\
& \dfrac{1}{1-2x}=1+2x+{{\left( 2x \right)}^{2}}+{{\left( 2x \right)}^{3}}+... \\
& \dfrac{1}{1-3x}=1+3x+{{\left( 3x \right)}^{2}}+{{\left( 3x \right)}^{3}}+... \\
\end{align}$
Using these expansions in the RHS part of our equation, we get the following result
$\begin{align}
& \dfrac{\left( 1+x \right)\left( 1+2x \right)\left( 1+3x \right)}{\left( 1-x \right)\left( 1-2x \right)\left( 1-3x \right)}= \\
& \left( 6{{x}^{3}}+11{{x}^{2}}+6x+1 \right)\left[ \dfrac{1}{2}\left( 1+x+{{x}^{2}}+{{x}^{3}}+... \right)-4\left( 1+2x+{{\left( 2x \right)}^{2}}+{{\left( 2x \right)}^{3}}+... \right)+\dfrac{9}{2}\left( 1+3x+{{\left( 3x \right)}^{2}}+{{\left( 3x \right)}^{3}}+... \right) \right] \\
\end{align}$
We are only concerned about the coefficient of ${{x}^{n}}$ term. So, we can neglect all other terms and focus on just the term with ${{x}^{n}}$.
\[\begin{align}
& \text{Terms with }{{x}^{n}}=\dfrac{1}{2}\left[ 6{{x}^{n}}+11{{x}^{n}}+6{{x}^{n}}+{{x}^{n}} \right]-4\left[ 6\cdot {{2}^{n-3}}{{x}^{n}}+11\cdot {{2}^{n-2}}{{x}^{n}}+6\cdot {{2}^{n-1}}{{x}^{n}}+{{2}^{n}}{{x}^{n}} \right] \\
& +\dfrac{9}{2}\left[ 6\cdot {{3}^{n-3}}{{x}^{n}}+11\cdot {{3}^{n-2}}{{x}^{n}}+6\cdot {{3}^{n-1}}{{x}^{n}}+{{3}^{n}}{{x}^{n}} \right] \\
\end{align}\]
Hence, the coefficient of ${{x}^{n}}$ is = \[\dfrac{1}{2}\left[ 6+11+6+1 \right]-4\left[ 6\cdot {{2}^{n-3}}+11\cdot {{2}^{n-2}}+6\cdot {{2}^{n-1}}+{{2}^{n}} \right]+\dfrac{9}{2}\left[ 6\cdot {{3}^{n-3}}+11\cdot {{3}^{n-2}}+6\cdot {{3}^{n-1}}+{{3}^{n}} \right]\]
We can further solve the above equation as
Coefficient = \[12-24\cdot {{2}^{n-3}}-44\cdot {{2}^{n-2}}-24\cdot {{2}^{n-1}}-4\cdot {{2}^{n}}+27\cdot {{3}^{n-3}}+\dfrac{99}{2}\cdot {{3}^{n-2}}+27\cdot {{3}^{n-1}}+\dfrac{9}{2}{{3}^{n}}\]
This can further be reduced as
Coefficient = \[12-3\cdot {{2}^{n}}-11\cdot {{2}^{n}}-12\cdot {{2}^{n}}-4\cdot {{2}^{n}}+{{3}^{n}}+\dfrac{11}{2}\cdot {{3}^{n}}+9\cdot {{3}^{n}}+\dfrac{9}{2}{{3}^{n}}\]
Hence, we can now clearly write
Coefficient = $12-30\cdot {{2}^{n}}+20\cdot {{3}^{n}}$
Hence, option (b) is the correct answer.
Note: We must be very careful while solving this problem, as it has some very complicated terms, and has a high chance of calculation mistake. We must use the correct expansions for all terms. And we must not miss any term while calculating the coefficient.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE


