Answer
Verified
447k+ views
Hint: First we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]. By using this formula, we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. Now we should expand the expansion \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]. Now we should separate the coefficients of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] and this should be written in the form of \[1+ax+b{{x}^{2}}+c{{x}^{3}}+.......\]. Now we should write the coefficient of x. We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, we should use this formula, to find the coefficient of x.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE