
Find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]
Answer
578.7k+ views
Hint: First we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]. By using this formula, we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. Now we should expand the expansion \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]. Now we should separate the coefficients of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] and this should be written in the form of \[1+ax+b{{x}^{2}}+c{{x}^{3}}+.......\]. Now we should write the coefficient of x. We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, we should use this formula, to find the coefficient of x.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

