Find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]
Answer
Verified
476.1k+ views
Hint: First we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]. By using this formula, we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. Now we should expand the expansion \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]. Now we should separate the coefficients of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] and this should be written in the form of \[1+ax+b{{x}^{2}}+c{{x}^{3}}+.......\]. Now we should write the coefficient of x. We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, we should use this formula, to find the coefficient of x.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE