
find the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] , where \[x\ne 0,1\].
(a) 1
(b) 4
(c) \[-4\]
(d) \[-1\]
Answer
585.3k+ views
Hint: In this question, we have to first find the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\].
Using the formula of binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]
Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Also since the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\]. Using this we will have that the number of terms in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 11. After finding the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\]we will have to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion.
Complete step by step answer:
Let us first determine the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\].
Since we know that the binomial expansion of \[{{\left( a-b \right)}^{n}}\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
On comparing the expression \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] with \[{{\left( a-b \right)}^{n}}\], we get that
\[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\], \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] and \[n=10\].
We will now simplify the value of \[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\] using the identity that \[{{x}^{3}}+{{y}^{3}}=\left( x+1 \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\].
Then we have
\[\begin{align}
& a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{3}}+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{3}}}+1 \right)\left( {{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1 \right)}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& ={{x}^{\dfrac{1}{3}}}+1
\end{align}\]
That is we have \[a={{x}^{\dfrac{1}{3}}}+1\].
We will now simplify the value of \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] using the identity that \[{{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)\].
Then we have
\[\begin{align}
& b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{{{\left( {{x}^{2}} \right)}^{\dfrac{1}{2}}}-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{2}}}+1 \right)\left( {{x}^{\dfrac{1}{2}}}-1 \right)}{{{x}^{\dfrac{1}{2}}}\left( {{x}^{\dfrac{1}{2}}}-1 \right)} \\
& =\dfrac{{{x}^{\dfrac{1}{2}}}+1}{{{x}^{\dfrac{1}{2}}}} \\
& =1+{{x}^{-\dfrac{1}{2}}}
\end{align}\]
That is we have \[b=1+{{x}^{-\dfrac{1}{2}}}\].
Therefore the value of \[a-b\] is given by
\[\begin{align}
& a-b={{x}^{\dfrac{1}{3}}}+1-\left( 1+{{x}^{-\dfrac{1}{2}}} \right) \\
& ={{x}^{\dfrac{1}{3}}}+1-1-{{x}^{-\dfrac{1}{2}}} \\
& ={{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}}
\end{align}\]
Therefore we have simplified the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] into
\[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\]
We now have to expand the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\].
Now using \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
We will have
\[\begin{align}
& {{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{=}^{10}}{{C}_{0}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{10}}{{C}_{1}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{1}}{{\left( -1 \right)}^{1}}+...\,+ \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\,}^{10}}{{C}_{6}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{6}}{{\left( -1 \right)}^{6}}+...{{+}^{10}}{{C}_{9}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{9}}{{\left( -1 \right)}^{9}}{{+}^{10}}{{C}_{10}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{\left( -1 \right)}^{10}} \\
\end{align}\]
Now since we know that the number of terms in the binomial expansion of \[{{\left( a-b \right)}^{n}}\] is equals to \[n+1\].
Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\] is equals to
\[10+1=11\]
Also since by seeing the above binomial expansion, we have that the general term is given by
\[^{10}{{C}_{r}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{r}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10-r}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}..............(1)\]
Therefore in order to find coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion, we must have
\[\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)=-5\]
Solving the above equation, we get
\[\begin{align}
& \dfrac{r}{3}+\dfrac{r}{2}-\dfrac{10}{2}=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}-5=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}=0 \\
& \Rightarrow \dfrac{2r+3r}{6}=0 \\
& \Rightarrow \dfrac{5r}{6}=0 \\
& \Rightarrow r=0
\end{align}\]
Using substituting the value of \[r=0\] in equation (1), we get
\[^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}}\]
Now since
\[\begin{align}
& ^{10}{{C}_{0}}=\dfrac{10!}{10!} \\
& =1
\end{align}\]
Therefore we have
\[\begin{align}
& ^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}} \\
& =1\times {{x}^{-\dfrac{10}{2}}}\times 1 \\
& ={{x}^{-5}}
\end{align}\]
Therefore the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 1.
So, the correct answer is “Option A”.
Note: In this problem, in order to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] we have to find the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] . Then carefully take the general term to find the coefficient.
Using the formula of binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]
Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Also since the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\]. Using this we will have that the number of terms in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 11. After finding the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\]we will have to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion.
Complete step by step answer:
Let us first determine the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\].
Since we know that the binomial expansion of \[{{\left( a-b \right)}^{n}}\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
On comparing the expression \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] with \[{{\left( a-b \right)}^{n}}\], we get that
\[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\], \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] and \[n=10\].
We will now simplify the value of \[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\] using the identity that \[{{x}^{3}}+{{y}^{3}}=\left( x+1 \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\].
Then we have
\[\begin{align}
& a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{3}}+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{3}}}+1 \right)\left( {{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1 \right)}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& ={{x}^{\dfrac{1}{3}}}+1
\end{align}\]
That is we have \[a={{x}^{\dfrac{1}{3}}}+1\].
We will now simplify the value of \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] using the identity that \[{{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)\].
Then we have
\[\begin{align}
& b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{{{\left( {{x}^{2}} \right)}^{\dfrac{1}{2}}}-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{2}}}+1 \right)\left( {{x}^{\dfrac{1}{2}}}-1 \right)}{{{x}^{\dfrac{1}{2}}}\left( {{x}^{\dfrac{1}{2}}}-1 \right)} \\
& =\dfrac{{{x}^{\dfrac{1}{2}}}+1}{{{x}^{\dfrac{1}{2}}}} \\
& =1+{{x}^{-\dfrac{1}{2}}}
\end{align}\]
That is we have \[b=1+{{x}^{-\dfrac{1}{2}}}\].
Therefore the value of \[a-b\] is given by
\[\begin{align}
& a-b={{x}^{\dfrac{1}{3}}}+1-\left( 1+{{x}^{-\dfrac{1}{2}}} \right) \\
& ={{x}^{\dfrac{1}{3}}}+1-1-{{x}^{-\dfrac{1}{2}}} \\
& ={{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}}
\end{align}\]
Therefore we have simplified the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] into
\[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\]
We now have to expand the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\].
Now using \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
We will have
\[\begin{align}
& {{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{=}^{10}}{{C}_{0}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{10}}{{C}_{1}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{1}}{{\left( -1 \right)}^{1}}+...\,+ \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\,}^{10}}{{C}_{6}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{6}}{{\left( -1 \right)}^{6}}+...{{+}^{10}}{{C}_{9}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{9}}{{\left( -1 \right)}^{9}}{{+}^{10}}{{C}_{10}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{\left( -1 \right)}^{10}} \\
\end{align}\]
Now since we know that the number of terms in the binomial expansion of \[{{\left( a-b \right)}^{n}}\] is equals to \[n+1\].
Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\] is equals to
\[10+1=11\]
Also since by seeing the above binomial expansion, we have that the general term is given by
\[^{10}{{C}_{r}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{r}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10-r}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}..............(1)\]
Therefore in order to find coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion, we must have
\[\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)=-5\]
Solving the above equation, we get
\[\begin{align}
& \dfrac{r}{3}+\dfrac{r}{2}-\dfrac{10}{2}=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}-5=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}=0 \\
& \Rightarrow \dfrac{2r+3r}{6}=0 \\
& \Rightarrow \dfrac{5r}{6}=0 \\
& \Rightarrow r=0
\end{align}\]
Using substituting the value of \[r=0\] in equation (1), we get
\[^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}}\]
Now since
\[\begin{align}
& ^{10}{{C}_{0}}=\dfrac{10!}{10!} \\
& =1
\end{align}\]
Therefore we have
\[\begin{align}
& ^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}} \\
& =1\times {{x}^{-\dfrac{10}{2}}}\times 1 \\
& ={{x}^{-5}}
\end{align}\]
Therefore the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 1.
So, the correct answer is “Option A”.
Note: In this problem, in order to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] we have to find the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] . Then carefully take the general term to find the coefficient.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

