
find the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] , where \[x\ne 0,1\].
(a) 1
(b) 4
(c) \[-4\]
(d) \[-1\]
Answer
571.5k+ views
Hint: In this question, we have to first find the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\].
Using the formula of binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]
Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Also since the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\]. Using this we will have that the number of terms in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 11. After finding the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\]we will have to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion.
Complete step by step answer:
Let us first determine the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\].
Since we know that the binomial expansion of \[{{\left( a-b \right)}^{n}}\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
On comparing the expression \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] with \[{{\left( a-b \right)}^{n}}\], we get that
\[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\], \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] and \[n=10\].
We will now simplify the value of \[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\] using the identity that \[{{x}^{3}}+{{y}^{3}}=\left( x+1 \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\].
Then we have
\[\begin{align}
& a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{3}}+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{3}}}+1 \right)\left( {{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1 \right)}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& ={{x}^{\dfrac{1}{3}}}+1
\end{align}\]
That is we have \[a={{x}^{\dfrac{1}{3}}}+1\].
We will now simplify the value of \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] using the identity that \[{{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)\].
Then we have
\[\begin{align}
& b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{{{\left( {{x}^{2}} \right)}^{\dfrac{1}{2}}}-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{2}}}+1 \right)\left( {{x}^{\dfrac{1}{2}}}-1 \right)}{{{x}^{\dfrac{1}{2}}}\left( {{x}^{\dfrac{1}{2}}}-1 \right)} \\
& =\dfrac{{{x}^{\dfrac{1}{2}}}+1}{{{x}^{\dfrac{1}{2}}}} \\
& =1+{{x}^{-\dfrac{1}{2}}}
\end{align}\]
That is we have \[b=1+{{x}^{-\dfrac{1}{2}}}\].
Therefore the value of \[a-b\] is given by
\[\begin{align}
& a-b={{x}^{\dfrac{1}{3}}}+1-\left( 1+{{x}^{-\dfrac{1}{2}}} \right) \\
& ={{x}^{\dfrac{1}{3}}}+1-1-{{x}^{-\dfrac{1}{2}}} \\
& ={{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}}
\end{align}\]
Therefore we have simplified the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] into
\[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\]
We now have to expand the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\].
Now using \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
We will have
\[\begin{align}
& {{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{=}^{10}}{{C}_{0}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{10}}{{C}_{1}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{1}}{{\left( -1 \right)}^{1}}+...\,+ \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\,}^{10}}{{C}_{6}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{6}}{{\left( -1 \right)}^{6}}+...{{+}^{10}}{{C}_{9}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{9}}{{\left( -1 \right)}^{9}}{{+}^{10}}{{C}_{10}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{\left( -1 \right)}^{10}} \\
\end{align}\]
Now since we know that the number of terms in the binomial expansion of \[{{\left( a-b \right)}^{n}}\] is equals to \[n+1\].
Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\] is equals to
\[10+1=11\]
Also since by seeing the above binomial expansion, we have that the general term is given by
\[^{10}{{C}_{r}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{r}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10-r}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}..............(1)\]
Therefore in order to find coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion, we must have
\[\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)=-5\]
Solving the above equation, we get
\[\begin{align}
& \dfrac{r}{3}+\dfrac{r}{2}-\dfrac{10}{2}=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}-5=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}=0 \\
& \Rightarrow \dfrac{2r+3r}{6}=0 \\
& \Rightarrow \dfrac{5r}{6}=0 \\
& \Rightarrow r=0
\end{align}\]
Using substituting the value of \[r=0\] in equation (1), we get
\[^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}}\]
Now since
\[\begin{align}
& ^{10}{{C}_{0}}=\dfrac{10!}{10!} \\
& =1
\end{align}\]
Therefore we have
\[\begin{align}
& ^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}} \\
& =1\times {{x}^{-\dfrac{10}{2}}}\times 1 \\
& ={{x}^{-5}}
\end{align}\]
Therefore the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 1.
So, the correct answer is “Option A”.
Note: In this problem, in order to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] we have to find the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] . Then carefully take the general term to find the coefficient.
Using the formula of binomial expansion of elements say \[a\] and \[b\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]
Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Also since the number of terms in the binomial expansion of \[{{\left( a+b \right)}^{n}}\] is equal to \[n+1\]. Using this we will have that the number of terms in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 11. After finding the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\]we will have to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion.
Complete step by step answer:
Let us first determine the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\].
Since we know that the binomial expansion of \[{{\left( a-b \right)}^{n}}\] raised to the power \[n\] which is given by \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
On comparing the expression \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] with \[{{\left( a-b \right)}^{n}}\], we get that
\[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\], \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] and \[n=10\].
We will now simplify the value of \[a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}\] using the identity that \[{{x}^{3}}+{{y}^{3}}=\left( x+1 \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)\].
Then we have
\[\begin{align}
& a=\dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{3}}+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{3}}}+1 \right)\left( {{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1 \right)}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1} \\
& ={{x}^{\dfrac{1}{3}}}+1
\end{align}\]
That is we have \[a={{x}^{\dfrac{1}{3}}}+1\].
We will now simplify the value of \[b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}}\] using the identity that \[{{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)\].
Then we have
\[\begin{align}
& b=\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{{{\left( {{x}^{2}} \right)}^{\dfrac{1}{2}}}-1}{x-{{x}^{\dfrac{1}{2}}}} \\
& =\dfrac{\left( {{x}^{\dfrac{1}{2}}}+1 \right)\left( {{x}^{\dfrac{1}{2}}}-1 \right)}{{{x}^{\dfrac{1}{2}}}\left( {{x}^{\dfrac{1}{2}}}-1 \right)} \\
& =\dfrac{{{x}^{\dfrac{1}{2}}}+1}{{{x}^{\dfrac{1}{2}}}} \\
& =1+{{x}^{-\dfrac{1}{2}}}
\end{align}\]
That is we have \[b=1+{{x}^{-\dfrac{1}{2}}}\].
Therefore the value of \[a-b\] is given by
\[\begin{align}
& a-b={{x}^{\dfrac{1}{3}}}+1-\left( 1+{{x}^{-\dfrac{1}{2}}} \right) \\
& ={{x}^{\dfrac{1}{3}}}+1-1-{{x}^{-\dfrac{1}{2}}} \\
& ={{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}}
\end{align}\]
Therefore we have simplified the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] into
\[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\]
We now have to expand the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\].
Now using \[\begin{align}
& {{\left( a-b \right)}^{n}}{{=}^{n}}{{C}_{0}}{{\left( a \right)}^{n}}{{\left( b \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{n}}{{C}_{1}}{{\left( a \right)}^{n+1}}{{\left( b \right)}^{1}}{{\left( -1 \right)}^{1}}+...{{+}^{n}}{{C}_{r}}{{\left( a \right)}^{n-r}}{{\left( b \right)}^{r}}{{\left( -1 \right)}^{r}}+... \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{+}^{n}}{{C}_{n-1}}{{\left( a \right)}^{1}}{{\left( b \right)}^{n-1}}{{\left( -1 \right)}^{n-1}}{{+}^{n}}{{C}_{n}}{{\left( a \right)}^{0}}{{\left( b \right)}^{n}}{{\left( -1 \right)}^{n}} \\
\end{align}\]Where we have \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
We will have
\[\begin{align}
& {{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{=}^{10}}{{C}_{0}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{0}}{{\left( -1 \right)}^{0}}{{+}^{10}}{{C}_{1}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{1}}{{\left( -1 \right)}^{1}}+...\,+ \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{\,}^{10}}{{C}_{6}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{10-6}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{6}}{{\left( -1 \right)}^{6}}+...{{+}^{10}}{{C}_{9}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{1}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{9}}{{\left( -1 \right)}^{9}}{{+}^{10}}{{C}_{10}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{0}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10}}{{\left( -1 \right)}^{10}} \\
\end{align}\]
Now since we know that the number of terms in the binomial expansion of \[{{\left( a-b \right)}^{n}}\] is equals to \[n+1\].
Using this we will have that the number of terms in the binomial expansion of \[{{\left( {{x}^{\dfrac{1}{3}}}-{{x}^{-\dfrac{1}{2}}} \right)}^{10}}\] is equals to
\[10+1=11\]
Also since by seeing the above binomial expansion, we have that the general term is given by
\[^{10}{{C}_{r}}{{\left( {{x}^{\dfrac{1}{3}}} \right)}^{r}}{{\left( {{x}^{-\dfrac{1}{2}}} \right)}^{10-r}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}..............(1)\]
Therefore in order to find coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion, we must have
\[\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)=-5\]
Solving the above equation, we get
\[\begin{align}
& \dfrac{r}{3}+\dfrac{r}{2}-\dfrac{10}{2}=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}-5=-5 \\
& \Rightarrow \dfrac{r}{3}+\dfrac{r}{2}=0 \\
& \Rightarrow \dfrac{2r+3r}{6}=0 \\
& \Rightarrow \dfrac{5r}{6}=0 \\
& \Rightarrow r=0
\end{align}\]
Using substituting the value of \[r=0\] in equation (1), we get
\[^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}}\]
Now since
\[\begin{align}
& ^{10}{{C}_{0}}=\dfrac{10!}{10!} \\
& =1
\end{align}\]
Therefore we have
\[\begin{align}
& ^{10}{{C}_{r}}{{\left( x \right)}^{\dfrac{1}{3}\left( r \right)-\dfrac{1}{2}\left( 10-r \right)}}{{\left( -1 \right)}^{10-r}}{{=}^{10}}{{C}_{0}}{{\left( x \right)}^{\dfrac{1}{3}\left( 0 \right)-\dfrac{1}{2}\left( 10-0 \right)}}{{\left( -1 \right)}^{10-0}} \\
& =1\times {{x}^{-\dfrac{10}{2}}}\times 1 \\
& ={{x}^{-5}}
\end{align}\]
Therefore the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] is equals to 1.
So, the correct answer is “Option A”.
Note: In this problem, in order to determine the coefficient of the term of \[{{x}^{-5}}\]in the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] we have to find the binomial expansion of \[{{\left( \dfrac{x+1}{{{x}^{\dfrac{2}{3}}}-{{x}^{\dfrac{1}{3}}}+1}-\dfrac{x-1}{x-{{x}^{\dfrac{1}{2}}}} \right)}^{10}}\] . Then carefully take the general term to find the coefficient.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

