
Find the characteristics of the roots of the quadratic equation $3{{x}^{2}}-7x+2$?
Answer
500.4k+ views
Hint: We first describe the use of discriminant in the polynomials. Then we find the discriminant for the quadratic equation $3{{x}^{2}}-7x+2$. We explain the conditions for equal/unequal, rational/irrational roots in that quadratic equation.
Complete step by step solution:
Discriminant, in mathematics, a parameter of an object or system calculated as an aid to its classification or solution. In the case of a quadratic equation $a{{x}^{2}}+bx+c=0$ the discriminant is $D={{b}^{2}}-4ac$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
The roots of a quadratic equation with real coefficients are real and distinct if $D={{b}^{2}}-4ac>0$.
Roots are real but equal if $D={{b}^{2}}-4ac=0$
Roots are a conjugate pair of complex roots if $D={{b}^{2}}-4ac<0$.
The roots will be rational when $D={{b}^{2}}-4ac$ is a perfect square. If the discriminant is not a perfect square, then the roots are irrational.
For $3{{x}^{2}}-7x+2$, $D={{\left( -7 \right)}^{2}}-4\times 3\times 2=25$ is a perfect square. Therefore, the roots are rational but unequal.
Note: The roots are equal when $D={{b}^{2}}-4ac=0$. Although the roots are the same, the number of roots will always be two. For our convenience we don’t use the root values twice but we can’t say that the number of roots for that quadratic equation is one as the roots are equal.
Complete step by step solution:
Discriminant, in mathematics, a parameter of an object or system calculated as an aid to its classification or solution. In the case of a quadratic equation $a{{x}^{2}}+bx+c=0$ the discriminant is $D={{b}^{2}}-4ac$.
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
The roots of a quadratic equation with real coefficients are real and distinct if $D={{b}^{2}}-4ac>0$.
Roots are real but equal if $D={{b}^{2}}-4ac=0$
Roots are a conjugate pair of complex roots if $D={{b}^{2}}-4ac<0$.
The roots will be rational when $D={{b}^{2}}-4ac$ is a perfect square. If the discriminant is not a perfect square, then the roots are irrational.
For $3{{x}^{2}}-7x+2$, $D={{\left( -7 \right)}^{2}}-4\times 3\times 2=25$ is a perfect square. Therefore, the roots are rational but unequal.
Note: The roots are equal when $D={{b}^{2}}-4ac=0$. Although the roots are the same, the number of roots will always be two. For our convenience we don’t use the root values twice but we can’t say that the number of roots for that quadratic equation is one as the roots are equal.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

