
How do you find the average value of the function for $f\left( x \right)={{e}^{x}}-2x,0\le x\le 2?$
Answer
444k+ views
Hint: The average value is the mean value. The average value of a function $f$ defined in the interval$\left[ a,b \right]$ is given by the formula $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx.$ We will compare the given values with the formula.
Complete step by step answer:
Let us consider the given function defined as $f\left( x \right)={{e}^{x}}-2x.$
This function is defined for all values of $x$ in the interval $\left[ 0,2 \right].$
We are asked to find the average value of the given function.
We know that the average value of a function $f\left( x \right)$ over the interval $\left[ a,b \right]$ is given by the formula $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx.$
We are going to compare the values to find the average value of the given function over the given interval.
We will get $a=0$ and $b=2,$ the interval is $\left[ 0,2 \right].$
Also, we know that $f\left( x \right)={{e}^{x}}-2x.$
Therefore, the average value of the given function is obtained by substituting these values in the formula for finding the average value of a function.
So, after applying the values, we will get $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{1}{2-0}\int\limits_{0}^{2}{\left( {{e}^{x}}-2x \right)}dx.$
We will get the following $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{1}{2}\int\limits_{0}^{2}{\left( {{e}^{x}}-2x \right)}dx=\dfrac{1}{2}\int\limits_{0}^{2}{{{e}^{x}}}dx+\dfrac{1}{2}\int\limits_{0}^{2}{2x}dx.$
We know that $\int{{{e}^{x}}={{e}^{x}}.}$
Therefore, the first integral will become $\int\limits_{0}^{2}{{{e}^{x}}}dx=\left[ {{e}^{x}} \right]_{0}^{2}={{e}^{2}}-{{e}^{0}}={{e}^{2}}-1.$
When we use the linearity property, the second integral will become $\int\limits_{0}^{2}{2x}dx=2\int\limits_{0}^{2}{x}dx=2\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{2}=2\left( \dfrac{{{2}^{2}}}{2}-\dfrac{0}{2} \right)=2\left( \dfrac{4}{2}-0 \right)=2\times \dfrac{4}{2}=4.$
Now, we will apply these two values in the obtained equation instead of the terms with the symbol of integration.
We will get $\overline{f\left( x \right)}=\dfrac{1}{2}\int\limits_{0}^{2}{{{e}^{x}}}dx+\dfrac{1}{2}\int\limits_{0}^{2}{2x}dx=\dfrac{1}{2}\left( {{e}^{2}}-1 \right)+\dfrac{1}{2}\times 4.$
We will get $\overline{f\left( x \right)}=\dfrac{1}{2}{{e}^{2}}-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 4=\dfrac{1}{2}{{e}^{2}}-\dfrac{1}{2}+2=\dfrac{1}{2}{{e}^{2}}+\dfrac{3}{2}.$
We know that ${{e}^{2}}=7.3891.$
Therefore, we will get $\dfrac{1}{2}{{e}^{2}}-\dfrac{3}{2}=\dfrac{1}{2}\left( {{e}^{2}}-3 \right)=\dfrac{1}{2}\left( 7.3891-3 \right)=\dfrac{1}{2}\times 4.3891.$
Hence the average value of the function is $2.1945.$
Note: By linearity property of the integration, we will get $\int\limits_{a}^{b}{\left( px+qy \right)}dx=p\int\limits_{a}^{b}{x}dx+q\int\limits_{a}^{b}{y}dx.$ Also, we have $k\int\limits_{a}^{b}{\left( x+y \right)}dx=k\int\limits_{a}^{b}{x}dx+k\int\limits_{a}^{b}{y}dx.$ We know that $e=2.71828.$
Complete step by step answer:
Let us consider the given function defined as $f\left( x \right)={{e}^{x}}-2x.$
This function is defined for all values of $x$ in the interval $\left[ 0,2 \right].$
We are asked to find the average value of the given function.
We know that the average value of a function $f\left( x \right)$ over the interval $\left[ a,b \right]$ is given by the formula $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx.$
We are going to compare the values to find the average value of the given function over the given interval.
We will get $a=0$ and $b=2,$ the interval is $\left[ 0,2 \right].$
Also, we know that $f\left( x \right)={{e}^{x}}-2x.$
Therefore, the average value of the given function is obtained by substituting these values in the formula for finding the average value of a function.
So, after applying the values, we will get $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{1}{2-0}\int\limits_{0}^{2}{\left( {{e}^{x}}-2x \right)}dx.$
We will get the following $\overline{f\left( x \right)}=\dfrac{1}{b-a}\int\limits_{a}^{b}{f\left( x \right)}dx=\dfrac{1}{2}\int\limits_{0}^{2}{\left( {{e}^{x}}-2x \right)}dx=\dfrac{1}{2}\int\limits_{0}^{2}{{{e}^{x}}}dx+\dfrac{1}{2}\int\limits_{0}^{2}{2x}dx.$
We know that $\int{{{e}^{x}}={{e}^{x}}.}$
Therefore, the first integral will become $\int\limits_{0}^{2}{{{e}^{x}}}dx=\left[ {{e}^{x}} \right]_{0}^{2}={{e}^{2}}-{{e}^{0}}={{e}^{2}}-1.$
When we use the linearity property, the second integral will become $\int\limits_{0}^{2}{2x}dx=2\int\limits_{0}^{2}{x}dx=2\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{2}=2\left( \dfrac{{{2}^{2}}}{2}-\dfrac{0}{2} \right)=2\left( \dfrac{4}{2}-0 \right)=2\times \dfrac{4}{2}=4.$
Now, we will apply these two values in the obtained equation instead of the terms with the symbol of integration.
We will get $\overline{f\left( x \right)}=\dfrac{1}{2}\int\limits_{0}^{2}{{{e}^{x}}}dx+\dfrac{1}{2}\int\limits_{0}^{2}{2x}dx=\dfrac{1}{2}\left( {{e}^{2}}-1 \right)+\dfrac{1}{2}\times 4.$
We will get $\overline{f\left( x \right)}=\dfrac{1}{2}{{e}^{2}}-1\times \dfrac{1}{2}+\dfrac{1}{2}\times 4=\dfrac{1}{2}{{e}^{2}}-\dfrac{1}{2}+2=\dfrac{1}{2}{{e}^{2}}+\dfrac{3}{2}.$
We know that ${{e}^{2}}=7.3891.$
Therefore, we will get $\dfrac{1}{2}{{e}^{2}}-\dfrac{3}{2}=\dfrac{1}{2}\left( {{e}^{2}}-3 \right)=\dfrac{1}{2}\left( 7.3891-3 \right)=\dfrac{1}{2}\times 4.3891.$
Hence the average value of the function is $2.1945.$
Note: By linearity property of the integration, we will get $\int\limits_{a}^{b}{\left( px+qy \right)}dx=p\int\limits_{a}^{b}{x}dx+q\int\limits_{a}^{b}{y}dx.$ Also, we have $k\int\limits_{a}^{b}{\left( x+y \right)}dx=k\int\limits_{a}^{b}{x}dx+k\int\limits_{a}^{b}{y}dx.$ We know that $e=2.71828.$
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
