
Find the area of triangle whose vertices are $\left( { - 5, - 1} \right)\left( {3, - 5} \right)\left( {5,2} \right)$.
Answer
511.5k+ views
Hint: In the given problem three vertices points of a triangle is given. To find the area the triangle we will apply the formula to find the area of triangle i.e. $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$ Points are given in the question. We will put the values in the given formula, thus we will get the correct answer.
Complete step by step solution: Formula: Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Given that triangle whose vertices are $\left( { - 5, - 1} \right)\left( {3, - 5} \right)\left( {5,2} \right)$
From these points, we get the values
$
{x_1} = - 5 \\
{y_1} = - 1 \\
{x_2} = 3 \\
{y_2} = - 5 \\
{x_3} = 5 \\
{y_3} = 2 \\
$
Put all these values in the above formula
The formula is:
Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Now by putting all values
We get:
\[
\dfrac{1}{2}\left[ {\left( { - 5 \times \left( { - 5} \right) + 3 \times 2 + 5 \times \left( { - 1} \right)} \right) - \left( {3 \times \left( { - 1} \right) + 5 \times \left( { - 5} \right) + \left( { - 5} \right) \times 2} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 25 + 6 - 5} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 30 + 6} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 24} \right) - \left( { - 38} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ { - 24 + 38} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {14} \right] \\
\Rightarrow 7{\text{SqUnits}} \\
\]
Hence, we get the correct answer. The area of the triangle is 7 sq units.
Note: In this question, we have to remember the formula of area of the triangle, without this we cannot solve this problem, and then we have to put all the values in the formula from the question where vertices are given. Thus by calculating it we get the correct answer that is 7 sq units.
Complete step by step solution: Formula: Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Given that triangle whose vertices are $\left( { - 5, - 1} \right)\left( {3, - 5} \right)\left( {5,2} \right)$
From these points, we get the values
$
{x_1} = - 5 \\
{y_1} = - 1 \\
{x_2} = 3 \\
{y_2} = - 5 \\
{x_3} = 5 \\
{y_3} = 2 \\
$
Put all these values in the above formula
The formula is:
Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Now by putting all values
We get:
\[
\dfrac{1}{2}\left[ {\left( { - 5 \times \left( { - 5} \right) + 3 \times 2 + 5 \times \left( { - 1} \right)} \right) - \left( {3 \times \left( { - 1} \right) + 5 \times \left( { - 5} \right) + \left( { - 5} \right) \times 2} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 25 + 6 - 5} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 30 + 6} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 24} \right) - \left( { - 38} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ { - 24 + 38} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {14} \right] \\
\Rightarrow 7{\text{SqUnits}} \\
\]
Hence, we get the correct answer. The area of the triangle is 7 sq units.
Note: In this question, we have to remember the formula of area of the triangle, without this we cannot solve this problem, and then we have to put all the values in the formula from the question where vertices are given. Thus by calculating it we get the correct answer that is 7 sq units.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
