
Find the area of triangle whose vertices are $\left( { - 5, - 1} \right)\left( {3, - 5} \right)\left( {5,2} \right)$.
Answer
575.4k+ views
Hint: In the given problem three vertices points of a triangle is given. To find the area the triangle we will apply the formula to find the area of triangle i.e. $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$ Points are given in the question. We will put the values in the given formula, thus we will get the correct answer.
Complete step by step solution: Formula: Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Given that triangle whose vertices are $\left( { - 5, - 1} \right)\left( {3, - 5} \right)\left( {5,2} \right)$
From these points, we get the values
$
{x_1} = - 5 \\
{y_1} = - 1 \\
{x_2} = 3 \\
{y_2} = - 5 \\
{x_3} = 5 \\
{y_3} = 2 \\
$
Put all these values in the above formula
The formula is:
Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Now by putting all values
We get:
\[
\dfrac{1}{2}\left[ {\left( { - 5 \times \left( { - 5} \right) + 3 \times 2 + 5 \times \left( { - 1} \right)} \right) - \left( {3 \times \left( { - 1} \right) + 5 \times \left( { - 5} \right) + \left( { - 5} \right) \times 2} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 25 + 6 - 5} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 30 + 6} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 24} \right) - \left( { - 38} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ { - 24 + 38} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {14} \right] \\
\Rightarrow 7{\text{SqUnits}} \\
\]
Hence, we get the correct answer. The area of the triangle is 7 sq units.
Note: In this question, we have to remember the formula of area of the triangle, without this we cannot solve this problem, and then we have to put all the values in the formula from the question where vertices are given. Thus by calculating it we get the correct answer that is 7 sq units.
Complete step by step solution: Formula: Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Given that triangle whose vertices are $\left( { - 5, - 1} \right)\left( {3, - 5} \right)\left( {5,2} \right)$
From these points, we get the values
$
{x_1} = - 5 \\
{y_1} = - 1 \\
{x_2} = 3 \\
{y_2} = - 5 \\
{x_3} = 5 \\
{y_3} = 2 \\
$
Put all these values in the above formula
The formula is:
Area of triangle= $\dfrac{1}{2}\left[ {\left( {{x_1}{y_2} + {x_2}{y_3} + {x_3}{y_1}} \right) - \left( {{x_2}{y_1} + {x_3}{y_2} + {x_1}{y_3}} \right)} \right]$
Now by putting all values
We get:
\[
\dfrac{1}{2}\left[ {\left( { - 5 \times \left( { - 5} \right) + 3 \times 2 + 5 \times \left( { - 1} \right)} \right) - \left( {3 \times \left( { - 1} \right) + 5 \times \left( { - 5} \right) + \left( { - 5} \right) \times 2} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 25 + 6 - 5} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 30 + 6} \right) - \left( { - 3 - 25 - 10} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {\left( { - 24} \right) - \left( { - 38} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\left[ { - 24 + 38} \right] \\
\Rightarrow \dfrac{1}{2}\left[ {14} \right] \\
\Rightarrow 7{\text{SqUnits}} \\
\]
Hence, we get the correct answer. The area of the triangle is 7 sq units.
Note: In this question, we have to remember the formula of area of the triangle, without this we cannot solve this problem, and then we have to put all the values in the formula from the question where vertices are given. Thus by calculating it we get the correct answer that is 7 sq units.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

