
Find the area of triangle formed by the points with polar coordinates
$\left( 1,\dfrac{\pi }{6} \right),\ \left( 2,\dfrac{\pi }{3} \right),\ \left( 3,\dfrac{\pi }{2} \right)$
Answer
606.6k+ views
- Hint:For solving this type of sums, first of all we have to convert the polar coordinates $\left( a,\theta \right)$, into X-Y coordinates i.e. $\left( a\cos \theta ,a\sin \theta \right)$. And then find the area of triangle using the formula of determinant which is given as,
\[\Delta =\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\]
Complete step-by-step solution -
Now, as given in the question we have to find the area of polar coordinates $\left( 1,\dfrac{\pi }{6} \right),\ \left( 2,\dfrac{\pi }{3} \right),\ \left( 3,\dfrac{\pi }{2} \right)$. The triangle $\Delta ABC$ formed by this coordinate can be seen in figure below:
Now, first of all we will convert polar coordinates in to cartesian coordinates or X-Y coordinates using the formula of radian to degree conversion i.e. $\text{Degree, }{}^\circ = \dfrac{180}{\pi }\times \text{Radians}$
So, $\dfrac{180}{\pi }\times \dfrac{\pi }{6}={{30}^{\circ }}$, similarly, we can convert other radians into degree.
Now, cartesian form of polar coordinates can be given as,
$\left( 1,\dfrac{\pi }{6} \right)=\left( 1\cos {{30}^{\circ }},1\sin {{30}^{\circ }} \right)$
$\Rightarrow \left( 1,\dfrac{\pi }{6} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)$
$\left( 2,\dfrac{\pi }{3} \right)=\left( 2\cos {{60}^{\circ }},2\sin {{60}^{\circ }} \right)$
$\Rightarrow \left( 1,\dfrac{\pi }{6} \right)=\left( 1,\sqrt{3} \right)$
$\left( 3,\dfrac{\pi }{2} \right)=\left( 3\cos {{90}^{\circ }},3\sin {{90}^{\circ }} \right)$
$\Rightarrow \left( 1,\dfrac{\pi }{6} \right)=\left( 0,3 \right)$
Now, the vertices of the triangle in cartesian coordinate system can be given as, $\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right),\left( 1,\sqrt{3} \right),\left( 0,3 \right)$. The tringle formed by this can be given as,
Now, the area of $\Delta ABC$ having vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$, can be given by determinant method of area of triangle i.e.
\[\text{Area of triangle, }\Delta =\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\] ……………………………….(i)
Simplifying the above equation, we get,
\[\Delta ABC=\dfrac{1}{2}\left( {{x}_{1}}\left| \begin{matrix}
{{y}_{2}} & 1 \\
{{y}_{3}} & 1 \\
\end{matrix} \right|-{{y}_{1}}\left| \begin{matrix}
{{x}_{2}} & 1 \\
{{x}_{3}} & 1 \\
\end{matrix} \right|-1\left| \begin{matrix}
{{x}_{2}} & {{y}_{2}} \\
{{x}_{3}} & {{y}_{3}} \\
\end{matrix} \right| \right)\] ……………………………(ii)
Where, ${{x}_{1}}=\dfrac{\sqrt{3}}{2},{{y}_{1}}=\dfrac{1}{2}$, ${{x}_{2}}=1,{{y}_{2}}=\sqrt{3}$, ${{x}_{3}}=0,{{y}_{3}}=3$
Substituting, the value of vertices derived as X-Y coordinates in expression (ii) and further equating, we get,
\[\Delta ABC=\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2}\left| \begin{matrix}
\sqrt{3} & 1 \\
3 & 1 \\
\end{matrix} \right|-\dfrac{1}{2}\left| \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right|+1\left| \begin{matrix}
1 & \sqrt{3} \\
0 & 3 \\
\end{matrix} \right| \right)\]
\[=\dfrac{1}{2}\left| \left( \dfrac{\sqrt{3}}{2} \right)\left( \sqrt{3}-3 \right)-\dfrac{1}{2}\left( 1-0 \right)+1\left( 3-0 \right) \right|\]
\[=\dfrac{1}{2}\left| \dfrac{3}{2}-\dfrac{3\sqrt{3}}{2}-\dfrac{1}{2}+3 \right|\]
\[=\dfrac{1}{2}\left| 4-\dfrac{3\sqrt{3}}{2} \right|=\left( 2-\dfrac{3\sqrt{3}}{4} \right)\text{sq}\text{. units}\]
Hence, the area of triangle with polar coordinates $\left( 1,\dfrac{\pi }{6} \right),\ \left( 2,\dfrac{\pi }{3} \right),\ \left( 3,\dfrac{\pi }{2} \right)$ is \[\left( 2-\dfrac{3\sqrt{3}}{4} \right)\text{sq}\text{. units}\].
Note: Students must know the formula of area of triangle by determinant method. While using this method students must keep in mind that in the formula cartesian coordinates are understood, not polar coordinates. So, they should also know how to convert polar coordinates into cartesian coordinates, otherwise they might make mistakes and the answer will be wrong. So, students must keep all the things in mind to solve the problem easily.
\[\Delta =\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\]
Complete step-by-step solution -
Now, as given in the question we have to find the area of polar coordinates $\left( 1,\dfrac{\pi }{6} \right),\ \left( 2,\dfrac{\pi }{3} \right),\ \left( 3,\dfrac{\pi }{2} \right)$. The triangle $\Delta ABC$ formed by this coordinate can be seen in figure below:
Now, first of all we will convert polar coordinates in to cartesian coordinates or X-Y coordinates using the formula of radian to degree conversion i.e. $\text{Degree, }{}^\circ = \dfrac{180}{\pi }\times \text{Radians}$
So, $\dfrac{180}{\pi }\times \dfrac{\pi }{6}={{30}^{\circ }}$, similarly, we can convert other radians into degree.
Now, cartesian form of polar coordinates can be given as,
$\left( 1,\dfrac{\pi }{6} \right)=\left( 1\cos {{30}^{\circ }},1\sin {{30}^{\circ }} \right)$
$\Rightarrow \left( 1,\dfrac{\pi }{6} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)$
$\left( 2,\dfrac{\pi }{3} \right)=\left( 2\cos {{60}^{\circ }},2\sin {{60}^{\circ }} \right)$
$\Rightarrow \left( 1,\dfrac{\pi }{6} \right)=\left( 1,\sqrt{3} \right)$
$\left( 3,\dfrac{\pi }{2} \right)=\left( 3\cos {{90}^{\circ }},3\sin {{90}^{\circ }} \right)$
$\Rightarrow \left( 1,\dfrac{\pi }{6} \right)=\left( 0,3 \right)$
Now, the vertices of the triangle in cartesian coordinate system can be given as, $\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right),\left( 1,\sqrt{3} \right),\left( 0,3 \right)$. The tringle formed by this can be given as,
Now, the area of $\Delta ABC$ having vertices $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),\left( {{x}_{3}},{{y}_{3}} \right)$, can be given by determinant method of area of triangle i.e.
\[\text{Area of triangle, }\Delta =\dfrac{1}{2}\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & 1 \\
{{x}_{2}} & {{y}_{2}} & 1 \\
{{x}_{3}} & {{y}_{3}} & 1 \\
\end{matrix} \right|\] ……………………………….(i)
Simplifying the above equation, we get,
\[\Delta ABC=\dfrac{1}{2}\left( {{x}_{1}}\left| \begin{matrix}
{{y}_{2}} & 1 \\
{{y}_{3}} & 1 \\
\end{matrix} \right|-{{y}_{1}}\left| \begin{matrix}
{{x}_{2}} & 1 \\
{{x}_{3}} & 1 \\
\end{matrix} \right|-1\left| \begin{matrix}
{{x}_{2}} & {{y}_{2}} \\
{{x}_{3}} & {{y}_{3}} \\
\end{matrix} \right| \right)\] ……………………………(ii)
Where, ${{x}_{1}}=\dfrac{\sqrt{3}}{2},{{y}_{1}}=\dfrac{1}{2}$, ${{x}_{2}}=1,{{y}_{2}}=\sqrt{3}$, ${{x}_{3}}=0,{{y}_{3}}=3$
Substituting, the value of vertices derived as X-Y coordinates in expression (ii) and further equating, we get,
\[\Delta ABC=\dfrac{1}{2}\left( \dfrac{\sqrt{3}}{2}\left| \begin{matrix}
\sqrt{3} & 1 \\
3 & 1 \\
\end{matrix} \right|-\dfrac{1}{2}\left| \begin{matrix}
1 & 1 \\
0 & 1 \\
\end{matrix} \right|+1\left| \begin{matrix}
1 & \sqrt{3} \\
0 & 3 \\
\end{matrix} \right| \right)\]
\[=\dfrac{1}{2}\left| \left( \dfrac{\sqrt{3}}{2} \right)\left( \sqrt{3}-3 \right)-\dfrac{1}{2}\left( 1-0 \right)+1\left( 3-0 \right) \right|\]
\[=\dfrac{1}{2}\left| \dfrac{3}{2}-\dfrac{3\sqrt{3}}{2}-\dfrac{1}{2}+3 \right|\]
\[=\dfrac{1}{2}\left| 4-\dfrac{3\sqrt{3}}{2} \right|=\left( 2-\dfrac{3\sqrt{3}}{4} \right)\text{sq}\text{. units}\]
Hence, the area of triangle with polar coordinates $\left( 1,\dfrac{\pi }{6} \right),\ \left( 2,\dfrac{\pi }{3} \right),\ \left( 3,\dfrac{\pi }{2} \right)$ is \[\left( 2-\dfrac{3\sqrt{3}}{4} \right)\text{sq}\text{. units}\].
Note: Students must know the formula of area of triangle by determinant method. While using this method students must keep in mind that in the formula cartesian coordinates are understood, not polar coordinates. So, they should also know how to convert polar coordinates into cartesian coordinates, otherwise they might make mistakes and the answer will be wrong. So, students must keep all the things in mind to solve the problem easily.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

