
Find the area of the region in the first quadrant enclosed by the x-axis, the line \[y=x\]and the circle\[{{x}^{2}}+{{y}^{2}}=32\].
Answer
607.8k+ views
Hint: First try to make a rough sketch. Then find out the symmetry. Then find the area under the curve using integral.
Complete step-by-step answer:
Consider the circle,
\[{{x}^{2}}+{{y}^{2}}=32\]
This can be written as,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{16\times 2} \\
& {{x}^{2}}+{{y}^{2}}=4\sqrt{2} \\
\end{align}\]
Here \[4\sqrt{2}\]is the radius of the given circle.
It is given that we need to find the area enclosed by circle, the x-axis and the line ‘y=x’
First, plot the graph of the region.
The shaded region is the required area.
To find the point of intersection of line ‘y=x’ and\[{{x}^{2}}+{{y}^{2}}=32\]. So we will substitute ‘y=x’ in the equation of circle, we get
\[{{y}^{2}}+{{y}^{2}}=32\]
\[\begin{align}
& \Rightarrow 2{{y}^{2}}=32 \\
& \Rightarrow {{y}^{2}}=\dfrac{32}{2}=16 \\
\end{align}\]
Taking square root on both sides, we get
\[\Rightarrow y=\pm 4\]
But we know in the line ‘y=x’, so
\[\Rightarrow x=\pm 4\]
Hence the point of intersection of the given line and circle is (-4, -4) and (4, 4).
As the point is in the first quadrant, the point is (4, 4).
From the figure we can get the required area by finding out the area under the line from ‘x=0’ and ‘x=4’, then add the area under the circle curve from ‘x=4’ to $'x=\sqrt{32}'$.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+\int\limits_{4}^{\sqrt{32}}{\sqrt{32-{{x}^{2}}}dx}........(i)\]
Now we integrate, \[\sqrt{32-{{x}^{2}}}\], separately.
Substitute,
$\begin{align}
& x=\sqrt{32}\sin (u) \\
& \Rightarrow u={{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \\
\end{align}$
Differentiating on both sides, we get
$dx=\sqrt{32}\cos (u)du$
So, we can write,
$\int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-{{\left( \sqrt{32}\sin (u) \right)}^{2}}}\left( \sqrt{32}\cos (u)du \right)}$
On solving, we get
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-\left( 32{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32\left( 1-{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
\end{align}$
But we know, $\sqrt{1-{{\sin }^{2}}x}=\cos x$, so the above equation becomes,
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32}\left( \cos (u) \right)\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{32\left( {{\cos }^{2}}(u) \right)du} \\
\end{align}$
Applying reduction formula, we have $\int{{{\cos }^{n}}x}dx=\dfrac{n-1}{n}\int{{{\cos }^{(n-2)}}xdx+\dfrac{{{\cos }^{(n-1)}}x\sin x}{n}}$ , so we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{2-1}{2}\int{{{\cos }^{(2-2)}}(u)dx+\dfrac{{{\cos }^{(2-1)}}(u)\sin (u)}{2}} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{1}{2}\int{1du+\dfrac{\cos (u)\sin (u)}{2}} \right] \\
\end{align}$
Taking out the common term, we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\dfrac{32}{2}\left[ \int{1du+\cos (u)\sin (u)} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ u+\cos (u)\sin (u) \right] \\
\end{align}$
Substituting back the value of ‘u’, we get
\[\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
\end{align}\]
Substituting this value in equation (i), we get
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right]_{4}^{\sqrt{32}}\]
On integrating the first part, we get
\[\text{Area =}\left| \left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{4}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \right|_{4}^{\sqrt{32}}\]
Applying the limits, we get
\[\text{Area =}\left| \left[ \dfrac{{{4}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]+16\left[ {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)+\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right)+\left( \dfrac{4}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right) \right) \right] \right|\]
Solving this, we get
\[\text{Area =}\left| \left[ 8-0 \right]+16\left[ {{\sin }^{-1}}\left( 1 \right)+\left( 1 \right)\cos \left( {{\sin }^{-1}}\left( 1 \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right)+\left( \dfrac{4}{4\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right) \right) \right] \right|\]
But, we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$ , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+\left( 1 \right)\cos \left( \dfrac{\pi }{2} \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right) \right) \right] \right|\]
But, we know \[{{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4},\cos \left( \dfrac{\pi }{2} \right)=0\] , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+0 \right]-16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( \dfrac{\pi }{4} \right) \right] \right|\]
But, we know \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] , so above equation becomes,
\[\begin{align}
& \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right) \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\dfrac{1}{2} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi +2}{4} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -4\pi -8 \right| \\
& \Rightarrow \text{Area=4}\pi \\
\end{align}\]
So, the area of the region in the first quadrant enclosed by the x-axis, the line \[y=x\]and the circle\[{{x}^{2}}+{{y}^{2}}=32\] is $4\pi $ square. units.
Note: The possibility of mistake is that students might try to calculate the area between the circle, line and y-axis instead.
Students can go wrong when substituting the upper and lower bounds in the integral and calculating the answer.
Complete step-by-step answer:
Consider the circle,
\[{{x}^{2}}+{{y}^{2}}=32\]
This can be written as,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{16\times 2} \\
& {{x}^{2}}+{{y}^{2}}=4\sqrt{2} \\
\end{align}\]
Here \[4\sqrt{2}\]is the radius of the given circle.
It is given that we need to find the area enclosed by circle, the x-axis and the line ‘y=x’
First, plot the graph of the region.
The shaded region is the required area.
To find the point of intersection of line ‘y=x’ and\[{{x}^{2}}+{{y}^{2}}=32\]. So we will substitute ‘y=x’ in the equation of circle, we get
\[{{y}^{2}}+{{y}^{2}}=32\]
\[\begin{align}
& \Rightarrow 2{{y}^{2}}=32 \\
& \Rightarrow {{y}^{2}}=\dfrac{32}{2}=16 \\
\end{align}\]
Taking square root on both sides, we get
\[\Rightarrow y=\pm 4\]
But we know in the line ‘y=x’, so
\[\Rightarrow x=\pm 4\]
Hence the point of intersection of the given line and circle is (-4, -4) and (4, 4).
As the point is in the first quadrant, the point is (4, 4).
From the figure we can get the required area by finding out the area under the line from ‘x=0’ and ‘x=4’, then add the area under the circle curve from ‘x=4’ to $'x=\sqrt{32}'$.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+\int\limits_{4}^{\sqrt{32}}{\sqrt{32-{{x}^{2}}}dx}........(i)\]
Now we integrate, \[\sqrt{32-{{x}^{2}}}\], separately.
Substitute,
$\begin{align}
& x=\sqrt{32}\sin (u) \\
& \Rightarrow u={{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \\
\end{align}$
Differentiating on both sides, we get
$dx=\sqrt{32}\cos (u)du$
So, we can write,
$\int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-{{\left( \sqrt{32}\sin (u) \right)}^{2}}}\left( \sqrt{32}\cos (u)du \right)}$
On solving, we get
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-\left( 32{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32\left( 1-{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
\end{align}$
But we know, $\sqrt{1-{{\sin }^{2}}x}=\cos x$, so the above equation becomes,
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32}\left( \cos (u) \right)\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{32\left( {{\cos }^{2}}(u) \right)du} \\
\end{align}$
Applying reduction formula, we have $\int{{{\cos }^{n}}x}dx=\dfrac{n-1}{n}\int{{{\cos }^{(n-2)}}xdx+\dfrac{{{\cos }^{(n-1)}}x\sin x}{n}}$ , so we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{2-1}{2}\int{{{\cos }^{(2-2)}}(u)dx+\dfrac{{{\cos }^{(2-1)}}(u)\sin (u)}{2}} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{1}{2}\int{1du+\dfrac{\cos (u)\sin (u)}{2}} \right] \\
\end{align}$
Taking out the common term, we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\dfrac{32}{2}\left[ \int{1du+\cos (u)\sin (u)} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ u+\cos (u)\sin (u) \right] \\
\end{align}$
Substituting back the value of ‘u’, we get
\[\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
\end{align}\]
Substituting this value in equation (i), we get
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right]_{4}^{\sqrt{32}}\]
On integrating the first part, we get
\[\text{Area =}\left| \left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{4}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \right|_{4}^{\sqrt{32}}\]
Applying the limits, we get
\[\text{Area =}\left| \left[ \dfrac{{{4}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]+16\left[ {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)+\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right)+\left( \dfrac{4}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right) \right) \right] \right|\]
Solving this, we get
\[\text{Area =}\left| \left[ 8-0 \right]+16\left[ {{\sin }^{-1}}\left( 1 \right)+\left( 1 \right)\cos \left( {{\sin }^{-1}}\left( 1 \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right)+\left( \dfrac{4}{4\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right) \right) \right] \right|\]
But, we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$ , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+\left( 1 \right)\cos \left( \dfrac{\pi }{2} \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right) \right) \right] \right|\]
But, we know \[{{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4},\cos \left( \dfrac{\pi }{2} \right)=0\] , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+0 \right]-16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( \dfrac{\pi }{4} \right) \right] \right|\]
But, we know \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] , so above equation becomes,
\[\begin{align}
& \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right) \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\dfrac{1}{2} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi +2}{4} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -4\pi -8 \right| \\
& \Rightarrow \text{Area=4}\pi \\
\end{align}\]
So, the area of the region in the first quadrant enclosed by the x-axis, the line \[y=x\]and the circle\[{{x}^{2}}+{{y}^{2}}=32\] is $4\pi $ square. units.
Note: The possibility of mistake is that students might try to calculate the area between the circle, line and y-axis instead.
Students can go wrong when substituting the upper and lower bounds in the integral and calculating the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

