
Find the area of the region in the first quadrant enclosed by the x-axis, the line \[y=x\]and the circle\[{{x}^{2}}+{{y}^{2}}=32\].
Answer
593.7k+ views
Hint: First try to make a rough sketch. Then find out the symmetry. Then find the area under the curve using integral.
Complete step-by-step answer:
Consider the circle,
\[{{x}^{2}}+{{y}^{2}}=32\]
This can be written as,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{16\times 2} \\
& {{x}^{2}}+{{y}^{2}}=4\sqrt{2} \\
\end{align}\]
Here \[4\sqrt{2}\]is the radius of the given circle.
It is given that we need to find the area enclosed by circle, the x-axis and the line ‘y=x’
First, plot the graph of the region.
The shaded region is the required area.
To find the point of intersection of line ‘y=x’ and\[{{x}^{2}}+{{y}^{2}}=32\]. So we will substitute ‘y=x’ in the equation of circle, we get
\[{{y}^{2}}+{{y}^{2}}=32\]
\[\begin{align}
& \Rightarrow 2{{y}^{2}}=32 \\
& \Rightarrow {{y}^{2}}=\dfrac{32}{2}=16 \\
\end{align}\]
Taking square root on both sides, we get
\[\Rightarrow y=\pm 4\]
But we know in the line ‘y=x’, so
\[\Rightarrow x=\pm 4\]
Hence the point of intersection of the given line and circle is (-4, -4) and (4, 4).
As the point is in the first quadrant, the point is (4, 4).
From the figure we can get the required area by finding out the area under the line from ‘x=0’ and ‘x=4’, then add the area under the circle curve from ‘x=4’ to $'x=\sqrt{32}'$.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+\int\limits_{4}^{\sqrt{32}}{\sqrt{32-{{x}^{2}}}dx}........(i)\]
Now we integrate, \[\sqrt{32-{{x}^{2}}}\], separately.
Substitute,
$\begin{align}
& x=\sqrt{32}\sin (u) \\
& \Rightarrow u={{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \\
\end{align}$
Differentiating on both sides, we get
$dx=\sqrt{32}\cos (u)du$
So, we can write,
$\int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-{{\left( \sqrt{32}\sin (u) \right)}^{2}}}\left( \sqrt{32}\cos (u)du \right)}$
On solving, we get
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-\left( 32{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32\left( 1-{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
\end{align}$
But we know, $\sqrt{1-{{\sin }^{2}}x}=\cos x$, so the above equation becomes,
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32}\left( \cos (u) \right)\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{32\left( {{\cos }^{2}}(u) \right)du} \\
\end{align}$
Applying reduction formula, we have $\int{{{\cos }^{n}}x}dx=\dfrac{n-1}{n}\int{{{\cos }^{(n-2)}}xdx+\dfrac{{{\cos }^{(n-1)}}x\sin x}{n}}$ , so we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{2-1}{2}\int{{{\cos }^{(2-2)}}(u)dx+\dfrac{{{\cos }^{(2-1)}}(u)\sin (u)}{2}} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{1}{2}\int{1du+\dfrac{\cos (u)\sin (u)}{2}} \right] \\
\end{align}$
Taking out the common term, we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\dfrac{32}{2}\left[ \int{1du+\cos (u)\sin (u)} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ u+\cos (u)\sin (u) \right] \\
\end{align}$
Substituting back the value of ‘u’, we get
\[\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
\end{align}\]
Substituting this value in equation (i), we get
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right]_{4}^{\sqrt{32}}\]
On integrating the first part, we get
\[\text{Area =}\left| \left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{4}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \right|_{4}^{\sqrt{32}}\]
Applying the limits, we get
\[\text{Area =}\left| \left[ \dfrac{{{4}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]+16\left[ {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)+\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right)+\left( \dfrac{4}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right) \right) \right] \right|\]
Solving this, we get
\[\text{Area =}\left| \left[ 8-0 \right]+16\left[ {{\sin }^{-1}}\left( 1 \right)+\left( 1 \right)\cos \left( {{\sin }^{-1}}\left( 1 \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right)+\left( \dfrac{4}{4\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right) \right) \right] \right|\]
But, we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$ , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+\left( 1 \right)\cos \left( \dfrac{\pi }{2} \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right) \right) \right] \right|\]
But, we know \[{{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4},\cos \left( \dfrac{\pi }{2} \right)=0\] , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+0 \right]-16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( \dfrac{\pi }{4} \right) \right] \right|\]
But, we know \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] , so above equation becomes,
\[\begin{align}
& \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right) \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\dfrac{1}{2} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi +2}{4} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -4\pi -8 \right| \\
& \Rightarrow \text{Area=4}\pi \\
\end{align}\]
So, the area of the region in the first quadrant enclosed by the x-axis, the line \[y=x\]and the circle\[{{x}^{2}}+{{y}^{2}}=32\] is $4\pi $ square. units.
Note: The possibility of mistake is that students might try to calculate the area between the circle, line and y-axis instead.
Students can go wrong when substituting the upper and lower bounds in the integral and calculating the answer.
Complete step-by-step answer:
Consider the circle,
\[{{x}^{2}}+{{y}^{2}}=32\]
This can be written as,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}=\sqrt{16\times 2} \\
& {{x}^{2}}+{{y}^{2}}=4\sqrt{2} \\
\end{align}\]
Here \[4\sqrt{2}\]is the radius of the given circle.
It is given that we need to find the area enclosed by circle, the x-axis and the line ‘y=x’
First, plot the graph of the region.
The shaded region is the required area.
To find the point of intersection of line ‘y=x’ and\[{{x}^{2}}+{{y}^{2}}=32\]. So we will substitute ‘y=x’ in the equation of circle, we get
\[{{y}^{2}}+{{y}^{2}}=32\]
\[\begin{align}
& \Rightarrow 2{{y}^{2}}=32 \\
& \Rightarrow {{y}^{2}}=\dfrac{32}{2}=16 \\
\end{align}\]
Taking square root on both sides, we get
\[\Rightarrow y=\pm 4\]
But we know in the line ‘y=x’, so
\[\Rightarrow x=\pm 4\]
Hence the point of intersection of the given line and circle is (-4, -4) and (4, 4).
As the point is in the first quadrant, the point is (4, 4).
From the figure we can get the required area by finding out the area under the line from ‘x=0’ and ‘x=4’, then add the area under the circle curve from ‘x=4’ to $'x=\sqrt{32}'$.
The formula of finding the area enclosed by $f(x)$ between $x=a$ and $x=b$ can be written as $=|\int\limits_{a}^{b}{f(x)dx|}$.
So the required area under the curve is,
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+\int\limits_{4}^{\sqrt{32}}{\sqrt{32-{{x}^{2}}}dx}........(i)\]
Now we integrate, \[\sqrt{32-{{x}^{2}}}\], separately.
Substitute,
$\begin{align}
& x=\sqrt{32}\sin (u) \\
& \Rightarrow u={{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \\
\end{align}$
Differentiating on both sides, we get
$dx=\sqrt{32}\cos (u)du$
So, we can write,
$\int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-{{\left( \sqrt{32}\sin (u) \right)}^{2}}}\left( \sqrt{32}\cos (u)du \right)}$
On solving, we get
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32-\left( 32{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32\left( 1-{{\sin }^{2}}(u) \right)}\left( \sqrt{32}\cos (u)du \right)} \\
\end{align}$
But we know, $\sqrt{1-{{\sin }^{2}}x}=\cos x$, so the above equation becomes,
$\begin{align}
& \int{\sqrt{32-{{x}^{2}}}}dx=\int{\sqrt{32}\left( \cos (u) \right)\left( \sqrt{32}\cos (u)du \right)} \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\int{32\left( {{\cos }^{2}}(u) \right)du} \\
\end{align}$
Applying reduction formula, we have $\int{{{\cos }^{n}}x}dx=\dfrac{n-1}{n}\int{{{\cos }^{(n-2)}}xdx+\dfrac{{{\cos }^{(n-1)}}x\sin x}{n}}$ , so we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{2-1}{2}\int{{{\cos }^{(2-2)}}(u)dx+\dfrac{{{\cos }^{(2-1)}}(u)\sin (u)}{2}} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=32\left[ \dfrac{1}{2}\int{1du+\dfrac{\cos (u)\sin (u)}{2}} \right] \\
\end{align}$
Taking out the common term, we get
$\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=\dfrac{32}{2}\left[ \int{1du+\cos (u)\sin (u)} \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ u+\cos (u)\sin (u) \right] \\
\end{align}$
Substituting back the value of ‘u’, we get
\[\begin{align}
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right)\sin \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
& \Rightarrow \int{\sqrt{32-{{x}^{2}}}}dx=16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \\
\end{align}\]
Substituting this value in equation (i), we get
\[\text{Area =}\int\limits_{0}^{4}{x\text{ }dx}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right]_{4}^{\sqrt{32}}\]
On integrating the first part, we get
\[\text{Area =}\left| \left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{4}+16\left[ {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right)+\left( \dfrac{x}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{x}{\sqrt{32}} \right) \right) \right] \right|_{4}^{\sqrt{32}}\]
Applying the limits, we get
\[\text{Area =}\left| \left[ \dfrac{{{4}^{2}}}{2}-\dfrac{{{0}^{2}}}{2} \right]+16\left[ {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)+\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{\sqrt{32}}{\sqrt{32}} \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right)+\left( \dfrac{4}{\sqrt{32}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{\sqrt{32}} \right) \right) \right] \right|\]
Solving this, we get
\[\text{Area =}\left| \left[ 8-0 \right]+16\left[ {{\sin }^{-1}}\left( 1 \right)+\left( 1 \right)\cos \left( {{\sin }^{-1}}\left( 1 \right) \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right)+\left( \dfrac{4}{4\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{4}{4\sqrt{2}} \right) \right) \right] \right|\]
But, we know ${{\sin }^{-1}}(1)=\dfrac{\pi }{2}$ , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+\left( 1 \right)\cos \left( \dfrac{\pi }{2} \right) \right]-16\left[ {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( {{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right) \right) \right] \right|\]
But, we know \[{{\sin }^{-1}}\left( \dfrac{1}{\sqrt{2}} \right)=\dfrac{\pi }{4},\cos \left( \dfrac{\pi }{2} \right)=0\] , so above equation becomes,
\[\text{Area =}\left| 8+16\left[ \dfrac{\pi }{2}+0 \right]-16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\cos \left( \dfrac{\pi }{4} \right) \right] \right|\]
But, we know \[\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] , so above equation becomes,
\[\begin{align}
& \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{\sqrt{2}} \right) \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi }{4}+\dfrac{1}{2} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -16\left[ \dfrac{\pi +2}{4} \right] \right| \\
& \Rightarrow \text{Area =}\left| 8+8\pi -4\pi -8 \right| \\
& \Rightarrow \text{Area=4}\pi \\
\end{align}\]
So, the area of the region in the first quadrant enclosed by the x-axis, the line \[y=x\]and the circle\[{{x}^{2}}+{{y}^{2}}=32\] is $4\pi $ square. units.
Note: The possibility of mistake is that students might try to calculate the area between the circle, line and y-axis instead.
Students can go wrong when substituting the upper and lower bounds in the integral and calculating the answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

