
Find the area of the quadrilateral ABCD. If \[A\left( { - 5,7} \right), B\left( { - 4, - 5} \right), C\left( { - 1, - 6} \right){\text{ and }}D\left( {4,5} \right)\] are the vertices of a quadrilateral.
Answer
613.5k+ views
Hint: In this question first of all, draw the figure of the quadrilateral which will give us a clear idea of what we have to find, divide it into two triangles. The area of the quadrilateral is the sum of areas of the two triangles. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given points are \[A\left( { - 5,7} \right), B\left( { - 4, - 5} \right), C\left( { - 1, - 6} \right){\text{ and }}D\left( {4,5} \right)\]
Joining \[AC\], two triangles are formed i.e., \[\Delta ABC \& \Delta ACD\] as shown in the below figure:
Hence area of quadrilateral \[ABCD\]= area of \[\Delta ABC\] + area of \[\Delta ACD\]
We know that for the given three points \[P\left( {{x_1},{y_1}} \right),Q\left( {{x_2},{y_2}} \right){\text{ and }}R\left( {{x_3},{y_3}} \right)\] the area of the \[\Delta PQR\] is given by \[\Delta = \dfrac{1}{2}\left| {\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\].
Now the area of the \[\Delta ABC\] where \[A\left( { - 5,7} \right),B\left( { - 4, - 5} \right){\text{ and }}C\left( { - 1, - 6} \right)\] is given by
\[
\Rightarrow {\Delta _1} = \dfrac{1}{2}\left| {\left[ { - 5\left( { - 5 - \left( { - 6} \right)} \right) + \left( { - 4} \right)\left( { - 6 - 7} \right) + \left( { - 1} \right)\left( {7 - \left( { - 5} \right)} \right)} \right]} \right| \\
\Rightarrow {\Delta _1} = \dfrac{1}{2}\left| {\left[ { - 5\left( 1 \right) - 4\left( { - 13} \right) + \left( { - 1} \right)\left( {12} \right)} \right]} \right| \\
\Rightarrow {\Delta _1} = \dfrac{1}{2}\left| {\left[ { - 5 + 52 - 12} \right]} \right| \\
\therefore {\Delta _1} = \dfrac{{35}}{2}{\text{ sq}}{\text{.units}} \\
\]
And the area of the \[\Delta ADC\] where \[A\left( { - 5,7} \right),D\left( {4,5} \right){\text{and C}}\left( { - 1, - 6} \right)\] is given by
\[
\Rightarrow {\Delta _2} = \dfrac{1}{2}\left| {\left[ { - 5\left( {5 - \left( { - 6} \right)} \right) + 4\left( { - 6 - 7} \right) + \left( { - 1} \right)\left( {7 - 5} \right)} \right]} \right| \\
\Rightarrow {\Delta _2} = \dfrac{1}{2}\left| {\left[ { - 5\left( {11} \right) + 4\left( { - 13} \right) + \left( { - 1} \right)\left( 2 \right)} \right]} \right| \\
\Rightarrow {\Delta _2} = \dfrac{1}{2}\left| {\left[ { - 109} \right]} \right| \\
\therefore {\Delta _2} = \dfrac{{109}}{2}{\text{ sq}}{\text{.units}} \\
\]
Therefore, area of the quadrilateral \[ABCD\]\[ = {\Delta _1} + {\Delta _2} = \dfrac{1}{2}\left[ {35 + 109} \right] = \dfrac{{144}}{2} = 72{\text{ sq}}{\text{.units}}\]
Thus, the area of the quadrilateral \[ABCD\] is 72 sq. units.
Note: For the given three points \[P\left( {{x_1},{y_1}} \right), Q\left( {{x_2},{y_2}} \right){\text{ and }}R\left( {{x_3},{y_3}} \right)\] the area of the \[\Delta PQR\] is given by \[\Delta = \dfrac{1}{2}\left| {\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\]. The area of the quadrilateral and triangle are always positive.
Complete step-by-step answer:
Given points are \[A\left( { - 5,7} \right), B\left( { - 4, - 5} \right), C\left( { - 1, - 6} \right){\text{ and }}D\left( {4,5} \right)\]
Joining \[AC\], two triangles are formed i.e., \[\Delta ABC \& \Delta ACD\] as shown in the below figure:
Hence area of quadrilateral \[ABCD\]= area of \[\Delta ABC\] + area of \[\Delta ACD\]
We know that for the given three points \[P\left( {{x_1},{y_1}} \right),Q\left( {{x_2},{y_2}} \right){\text{ and }}R\left( {{x_3},{y_3}} \right)\] the area of the \[\Delta PQR\] is given by \[\Delta = \dfrac{1}{2}\left| {\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\].
Now the area of the \[\Delta ABC\] where \[A\left( { - 5,7} \right),B\left( { - 4, - 5} \right){\text{ and }}C\left( { - 1, - 6} \right)\] is given by
\[
\Rightarrow {\Delta _1} = \dfrac{1}{2}\left| {\left[ { - 5\left( { - 5 - \left( { - 6} \right)} \right) + \left( { - 4} \right)\left( { - 6 - 7} \right) + \left( { - 1} \right)\left( {7 - \left( { - 5} \right)} \right)} \right]} \right| \\
\Rightarrow {\Delta _1} = \dfrac{1}{2}\left| {\left[ { - 5\left( 1 \right) - 4\left( { - 13} \right) + \left( { - 1} \right)\left( {12} \right)} \right]} \right| \\
\Rightarrow {\Delta _1} = \dfrac{1}{2}\left| {\left[ { - 5 + 52 - 12} \right]} \right| \\
\therefore {\Delta _1} = \dfrac{{35}}{2}{\text{ sq}}{\text{.units}} \\
\]
And the area of the \[\Delta ADC\] where \[A\left( { - 5,7} \right),D\left( {4,5} \right){\text{and C}}\left( { - 1, - 6} \right)\] is given by
\[
\Rightarrow {\Delta _2} = \dfrac{1}{2}\left| {\left[ { - 5\left( {5 - \left( { - 6} \right)} \right) + 4\left( { - 6 - 7} \right) + \left( { - 1} \right)\left( {7 - 5} \right)} \right]} \right| \\
\Rightarrow {\Delta _2} = \dfrac{1}{2}\left| {\left[ { - 5\left( {11} \right) + 4\left( { - 13} \right) + \left( { - 1} \right)\left( 2 \right)} \right]} \right| \\
\Rightarrow {\Delta _2} = \dfrac{1}{2}\left| {\left[ { - 109} \right]} \right| \\
\therefore {\Delta _2} = \dfrac{{109}}{2}{\text{ sq}}{\text{.units}} \\
\]
Therefore, area of the quadrilateral \[ABCD\]\[ = {\Delta _1} + {\Delta _2} = \dfrac{1}{2}\left[ {35 + 109} \right] = \dfrac{{144}}{2} = 72{\text{ sq}}{\text{.units}}\]
Thus, the area of the quadrilateral \[ABCD\] is 72 sq. units.
Note: For the given three points \[P\left( {{x_1},{y_1}} \right), Q\left( {{x_2},{y_2}} \right){\text{ and }}R\left( {{x_3},{y_3}} \right)\] the area of the \[\Delta PQR\] is given by \[\Delta = \dfrac{1}{2}\left| {\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]} \right|\]. The area of the quadrilateral and triangle are always positive.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

