
How do you find the area of a triangle whose vertices of triangle are A$\left( {2, - 4} \right)$, B$\left( {1,3} \right)$, C$\left( { - 2, - 1} \right)$?
Answer
533.7k+ views
Hint: In order to determine the area of $\Delta ABC$,you can clearly see that the coordinates are in the 2-Dimensional plane ,so directly use the formula for Area of$\Delta ABC$equal to $\left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$.The unit for area of triangle will be square units.
Formula Used:
Area of $\Delta ABC$$ = \left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Complete step-by-step solution:
Given a triangle let it be $\Delta ABC$having vertices as A$\left( {2, - 4} \right)$, B$\left( {1,3} \right)$, C$\left( { - 2, - 1} \right)$
Since, we are given the vertices in 2-dimensional plane,
So in order to calculate the area of triangle having vertices in 2-dimensional plane having vertices as are A$\left( {{x_1},{y_1}} \right)$, B$\left( {{x_2},{y_2}} \right)$, C$\left( {{x_3},{y_3}} \right)$as
Area of $\Delta ABC$$ = \left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Putting the value of coordinates into the formula ,
Area of $\Delta ABC$=
\[
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {2(3 - \left( { - 1} \right)) + 1( - 1 - \left( { - 4} \right)) + \left( { - 2} \right)( - 4 - 3)} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {2(3 + 1) + 1( - 1 + 4) + \left( { - 2} \right)( - 7)} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {2(4) + 1(3) + 14} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {8 + 3 + 14} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {25} \right] \\
\Rightarrow \dfrac{{25}}{2} \\
\Rightarrow 12.5\,sq.units \\
\]
Therefore, Area of $\Delta ABC$is equal to \[12.5\,sq.units\]
Note:
1. A triangle is a closed geometric shape having three no of edges and three vertices. A triangle having vertices named as A,B and C is denoted by $\Delta ABC$.
2.Area of Triangle in a 2-dimensional plane can be determined by following ways depending upon what type of information is given .
If length of base and height is given then
Area of $\Delta ABC$=$\dfrac{1}{2}\left( {base \times height} \right)$
If length of all the sides are given then,
Using heron’s formula
$
s = \dfrac{{a + b + c}}{2} \\
\\
$
Area of $\Delta ABC$=$\sqrt {s(s - a)(s - b)(s - c)} $
If coordinates of the all 3 vertices in cartesian plane are given then,
Area of $\Delta ABC$$ = \left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Formula Used:
Area of $\Delta ABC$$ = \left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Complete step-by-step solution:
Given a triangle let it be $\Delta ABC$having vertices as A$\left( {2, - 4} \right)$, B$\left( {1,3} \right)$, C$\left( { - 2, - 1} \right)$
Since, we are given the vertices in 2-dimensional plane,
So in order to calculate the area of triangle having vertices in 2-dimensional plane having vertices as are A$\left( {{x_1},{y_1}} \right)$, B$\left( {{x_2},{y_2}} \right)$, C$\left( {{x_3},{y_3}} \right)$as
Area of $\Delta ABC$$ = \left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Putting the value of coordinates into the formula ,
Area of $\Delta ABC$=
\[
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {2(3 - \left( { - 1} \right)) + 1( - 1 - \left( { - 4} \right)) + \left( { - 2} \right)( - 4 - 3)} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {2(3 + 1) + 1( - 1 + 4) + \left( { - 2} \right)( - 7)} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {2(4) + 1(3) + 14} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {8 + 3 + 14} \right] \\
\Rightarrow \left( {\dfrac{1}{2}} \right)\left[ {25} \right] \\
\Rightarrow \dfrac{{25}}{2} \\
\Rightarrow 12.5\,sq.units \\
\]
Therefore, Area of $\Delta ABC$is equal to \[12.5\,sq.units\]
Note:
1. A triangle is a closed geometric shape having three no of edges and three vertices. A triangle having vertices named as A,B and C is denoted by $\Delta ABC$.
2.Area of Triangle in a 2-dimensional plane can be determined by following ways depending upon what type of information is given .
If length of base and height is given then
Area of $\Delta ABC$=$\dfrac{1}{2}\left( {base \times height} \right)$
If length of all the sides are given then,
Using heron’s formula
$
s = \dfrac{{a + b + c}}{2} \\
\\
$
Area of $\Delta ABC$=$\sqrt {s(s - a)(s - b)(s - c)} $
If coordinates of the all 3 vertices in cartesian plane are given then,
Area of $\Delta ABC$$ = \left( {\dfrac{1}{2}} \right)\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

