
How to find the area of a triangle whose vertices are: $\left( {3, - 1} \right)$, $\left( {2,7} \right)$ and $\left( { - 5,6} \right)$?
Answer
489.6k+ views
Hint: In the given question, we are required to find the area of the triangle whose coordinates of vertices are given to us in the problem. So, we substitute the values of coordinates into the formula for area of the triangle as $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$ where $\left( {{x_1},{y_1}} \right)$, $\left( {{x_2},{y_2}} \right)$ and $\left( {{x_3},{y_3}} \right)$ are coordinates of the vertices of triangle.
Complete step by step answer:
The points given to us in the question are: $\left( {3, - 1} \right)$, $\left( {2,7} \right)$ and $\left( { - 5,6} \right)$
Now, we know that the formula for the area of triangle ABC with coordinates of vertices as $\left( {{x_1},{y_1}} \right)$, $\left( {{x_2},{y_2}} \right)$ and $\left( {{x_3},{y_3}} \right)$ is $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$.
So, we have, $\left( {{x_1},{y_1}} \right) = \left( {3, - 1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {2,7} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( { - 5,6} \right)$.
Substituting the values of coordinates of the three points, we get,
$ \Rightarrow \dfrac{1}{2}\left| {3\left( {7 - 6} \right) + 2\left( {6 - \left( { - 1} \right)} \right) - 5\left( { - 1 - 7} \right)} \right|$
Simplifying the expression,
$ \Rightarrow \dfrac{1}{2}\left| {3\left( 1 \right) + 2\left( {6 + 1} \right) - 5\left( { - 8} \right)} \right|$
Opening the brackets, we get,
$ \Rightarrow \dfrac{1}{2}\left| {3 + 14 + 40} \right|$
Simplifying the expression we get,
$ \Rightarrow \dfrac{1}{2}\left| {57} \right|$
So, we know that the modulus of any positive number is the number itself. So, we get,
$ \Rightarrow \dfrac{{57}}{2}$
Expressing in decimal representation, we get,
$ \Rightarrow 28.5$
So, the area of the triangle whose vertices are given as $\left( {3, - 1} \right)$, $\left( {2,7} \right)$ and $\left( { - 5,6} \right)$ is $28.5$ square units.
Note: Modulus function always returns the magnitude of the number which is always positive. Hence, even a negative number in a modulus function yields a positive value. We can take the coordinates of the vertices of the triangle in any cyclic order, we will arrive at the same answer as the sign will be adjusted due to the modulus function.
Complete step by step answer:
The points given to us in the question are: $\left( {3, - 1} \right)$, $\left( {2,7} \right)$ and $\left( { - 5,6} \right)$
Now, we know that the formula for the area of triangle ABC with coordinates of vertices as $\left( {{x_1},{y_1}} \right)$, $\left( {{x_2},{y_2}} \right)$ and $\left( {{x_3},{y_3}} \right)$ is $\dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|$.
So, we have, $\left( {{x_1},{y_1}} \right) = \left( {3, - 1} \right)$, $\left( {{x_2},{y_2}} \right) = \left( {2,7} \right)$ and $\left( {{x_3},{y_3}} \right) = \left( { - 5,6} \right)$.
Substituting the values of coordinates of the three points, we get,
$ \Rightarrow \dfrac{1}{2}\left| {3\left( {7 - 6} \right) + 2\left( {6 - \left( { - 1} \right)} \right) - 5\left( { - 1 - 7} \right)} \right|$
Simplifying the expression,
$ \Rightarrow \dfrac{1}{2}\left| {3\left( 1 \right) + 2\left( {6 + 1} \right) - 5\left( { - 8} \right)} \right|$
Opening the brackets, we get,
$ \Rightarrow \dfrac{1}{2}\left| {3 + 14 + 40} \right|$
Simplifying the expression we get,
$ \Rightarrow \dfrac{1}{2}\left| {57} \right|$
So, we know that the modulus of any positive number is the number itself. So, we get,
$ \Rightarrow \dfrac{{57}}{2}$
Expressing in decimal representation, we get,
$ \Rightarrow 28.5$
So, the area of the triangle whose vertices are given as $\left( {3, - 1} \right)$, $\left( {2,7} \right)$ and $\left( { - 5,6} \right)$ is $28.5$ square units.
Note: Modulus function always returns the magnitude of the number which is always positive. Hence, even a negative number in a modulus function yields a positive value. We can take the coordinates of the vertices of the triangle in any cyclic order, we will arrive at the same answer as the sign will be adjusted due to the modulus function.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

