
Find the approximate value of $\tan {{46}^{\circ }}$ (take $\pi =\dfrac{22}{7}$). \[\]
Answer
569.1k+ views
Hint: We write the given tangent trigonometric argument as $\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)$.We convert the given measures in degree for the tangent function into radian using the conversion formula${{R}^{c}}=\dfrac{\pi }{180}\times {{D}^{\circ }}$. We use the working rule for approximating a function $f\left( x \right)$ for a small quantity change $\delta x$ using first order differential ${{f}^{'}}\left( x \right)$ as $f\left( x+\delta x \right)\simeq f\left( x \right)+{{f}^{'}}\left( x \right)\delta x$. We take $x={{45}^{\circ }},\delta x={{1}^{\circ }}$ in radians to proceed. \[\]
Complete step-by-step solution:
We know that from differential calculus that we can approximate the function $f\left( x+\delta x \right)$ as $f\left( x \right)+{{f}^{'}}\left( x \right)\delta x$ where ${{f}^{'}}\left( x \right)$ is the first derivative of the function $f\left( x \right)$ and $\delta x$ is a very small quantity. So we have;
\[f\left( x+\delta x \right)\simeq f\left( x \right)+{{f}^{'}}\left( x \right)\delta x=f\left( x \right)+\delta x\dfrac{d}{dx}f\left( x \right)\]
We know how to convert from given measure degree ${{D}^{\circ }}$to radian ${{R}^{c}}$ as follows
\[{{R}^{c}}=\dfrac{\pi }{180}\times {{D}^{\circ }}\]
We know that the trigonometric function $\tan x$ takes its input in radians and from the set $\mathsf{\mathbb{R}}-\dfrac{2n+1}{2}\pi $ and returns from the set$\mathsf{\mathbb{R}}$.
We are asked in the question to find the approximate values of $\tan {{46}^{\circ }}$. Let us consider
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\]
We convert the measure to radian and have ;
\[\begin{align}
& {{45}^{\circ }}={{\left( 45\times \dfrac{\pi }{180} \right)}^{c}}=\dfrac{{{\pi }^{c}}}{4} \\
& {{1}^{\circ }}={{\left( 1\times \dfrac{\pi }{180} \right)}^{c}}={{\left( 1\times \dfrac{\dfrac{22}{7}}{180} \right)}^{c}}={{\left( \dfrac{22}{1260} \right)}^{c}}={{0.0176}^{c}} \\
\end{align}\]
Now we can write $\tan {{46}^{\circ }}$ as
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\simeq \tan \left( \dfrac{{{\pi }^{c}}}{4}+{{0.0176}^{c}} \right)\]
We see that $0.0176$ is a very small quantity compared to $\dfrac{\pi }{4}\simeq 0.7854$. So we can use differential approximation for small change $\delta x$ and have;
\[\tan \left( x+\delta x \right)\simeq \tan x+\delta x\dfrac{d}{dx}\left( \tan x \right)\]
We know from standard differential of tangent function is the square of secant that is $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$. So we have;
\[\Rightarrow \tan \left( x+\delta x \right)\simeq \tan x+\delta x{{\sec }^{2}}x\]
We take $x={{\left( \dfrac{\pi }{4} \right)}^{c}}$ and $\delta x\simeq {{0.01746}^{c}}$ in the above step to have to have;
\[\Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq \tan \left( \dfrac{\pi }{4} \right)+0.01746\times {{\sec }^{2}}\left( \dfrac{\pi }{4} \right)\]
We know that value of $\tan \left( \dfrac{\pi }{4} \right),\sec \left( \dfrac{\pi }{4} \right)$ trigonometric table as $\tan \left( \dfrac{\pi }{4} \right)=\tan {{45}^{\circ }}=1$ and $\sec \left( \dfrac{\pi }{4} \right)=\sec {{45}^{\circ }}=\sqrt{2}$ respectively. We put these values in the above step to have
\[\begin{align}
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq 1+0.01746\times {{\left( \sqrt{2} \right)}^{2}} \\
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right) \simeq 1+0.01746\times 2 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1+0.03492 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1.03492 \\
\end{align}\]
Note: We note that the approximation formula comes from Taylor’s series which is given by $f\left( x+h \right)=f\left( x \right)+h{{f}^{'}}\left( x \right)+\dfrac{{{h}^{2}}}{2!}{{f}^{''}}\left( x \right)+\dfrac{{{h}^{3}}}{3!}{{f}^{'''}}\left( x \right)+...$ where $h$ is the very small change in the function $f\left( x \right)$.If we take $y=\tan x$ we can approximate small change in $y$ as $\delta y$ corresponding to small change $\delta x\simeq dx$ in $x$ as $\delta y\simeq dy=\dfrac{d}{dx}\left( y=\tan x \right)\times dx$. We should remember that all trigonometric functions take their arguments in radians not in degree.
Complete step-by-step solution:
We know that from differential calculus that we can approximate the function $f\left( x+\delta x \right)$ as $f\left( x \right)+{{f}^{'}}\left( x \right)\delta x$ where ${{f}^{'}}\left( x \right)$ is the first derivative of the function $f\left( x \right)$ and $\delta x$ is a very small quantity. So we have;
\[f\left( x+\delta x \right)\simeq f\left( x \right)+{{f}^{'}}\left( x \right)\delta x=f\left( x \right)+\delta x\dfrac{d}{dx}f\left( x \right)\]
We know how to convert from given measure degree ${{D}^{\circ }}$to radian ${{R}^{c}}$ as follows
\[{{R}^{c}}=\dfrac{\pi }{180}\times {{D}^{\circ }}\]
We know that the trigonometric function $\tan x$ takes its input in radians and from the set $\mathsf{\mathbb{R}}-\dfrac{2n+1}{2}\pi $ and returns from the set$\mathsf{\mathbb{R}}$.
We are asked in the question to find the approximate values of $\tan {{46}^{\circ }}$. Let us consider
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\]
We convert the measure to radian and have ;
\[\begin{align}
& {{45}^{\circ }}={{\left( 45\times \dfrac{\pi }{180} \right)}^{c}}=\dfrac{{{\pi }^{c}}}{4} \\
& {{1}^{\circ }}={{\left( 1\times \dfrac{\pi }{180} \right)}^{c}}={{\left( 1\times \dfrac{\dfrac{22}{7}}{180} \right)}^{c}}={{\left( \dfrac{22}{1260} \right)}^{c}}={{0.0176}^{c}} \\
\end{align}\]
Now we can write $\tan {{46}^{\circ }}$ as
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\simeq \tan \left( \dfrac{{{\pi }^{c}}}{4}+{{0.0176}^{c}} \right)\]
We see that $0.0176$ is a very small quantity compared to $\dfrac{\pi }{4}\simeq 0.7854$. So we can use differential approximation for small change $\delta x$ and have;
\[\tan \left( x+\delta x \right)\simeq \tan x+\delta x\dfrac{d}{dx}\left( \tan x \right)\]
We know from standard differential of tangent function is the square of secant that is $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$. So we have;
\[\Rightarrow \tan \left( x+\delta x \right)\simeq \tan x+\delta x{{\sec }^{2}}x\]
We take $x={{\left( \dfrac{\pi }{4} \right)}^{c}}$ and $\delta x\simeq {{0.01746}^{c}}$ in the above step to have to have;
\[\Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq \tan \left( \dfrac{\pi }{4} \right)+0.01746\times {{\sec }^{2}}\left( \dfrac{\pi }{4} \right)\]
We know that value of $\tan \left( \dfrac{\pi }{4} \right),\sec \left( \dfrac{\pi }{4} \right)$ trigonometric table as $\tan \left( \dfrac{\pi }{4} \right)=\tan {{45}^{\circ }}=1$ and $\sec \left( \dfrac{\pi }{4} \right)=\sec {{45}^{\circ }}=\sqrt{2}$ respectively. We put these values in the above step to have
\[\begin{align}
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq 1+0.01746\times {{\left( \sqrt{2} \right)}^{2}} \\
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right) \simeq 1+0.01746\times 2 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1+0.03492 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1.03492 \\
\end{align}\]
Note: We note that the approximation formula comes from Taylor’s series which is given by $f\left( x+h \right)=f\left( x \right)+h{{f}^{'}}\left( x \right)+\dfrac{{{h}^{2}}}{2!}{{f}^{''}}\left( x \right)+\dfrac{{{h}^{3}}}{3!}{{f}^{'''}}\left( x \right)+...$ where $h$ is the very small change in the function $f\left( x \right)$.If we take $y=\tan x$ we can approximate small change in $y$ as $\delta y$ corresponding to small change $\delta x\simeq dx$ in $x$ as $\delta y\simeq dy=\dfrac{d}{dx}\left( y=\tan x \right)\times dx$. We should remember that all trigonometric functions take their arguments in radians not in degree.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

