
Find the approximate value of $\tan {{46}^{\circ }}$ (take $\pi =\dfrac{22}{7}$). \[\]
Answer
553.8k+ views
Hint: We write the given tangent trigonometric argument as $\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)$.We convert the given measures in degree for the tangent function into radian using the conversion formula${{R}^{c}}=\dfrac{\pi }{180}\times {{D}^{\circ }}$. We use the working rule for approximating a function $f\left( x \right)$ for a small quantity change $\delta x$ using first order differential ${{f}^{'}}\left( x \right)$ as $f\left( x+\delta x \right)\simeq f\left( x \right)+{{f}^{'}}\left( x \right)\delta x$. We take $x={{45}^{\circ }},\delta x={{1}^{\circ }}$ in radians to proceed. \[\]
Complete step-by-step solution:
We know that from differential calculus that we can approximate the function $f\left( x+\delta x \right)$ as $f\left( x \right)+{{f}^{'}}\left( x \right)\delta x$ where ${{f}^{'}}\left( x \right)$ is the first derivative of the function $f\left( x \right)$ and $\delta x$ is a very small quantity. So we have;
\[f\left( x+\delta x \right)\simeq f\left( x \right)+{{f}^{'}}\left( x \right)\delta x=f\left( x \right)+\delta x\dfrac{d}{dx}f\left( x \right)\]
We know how to convert from given measure degree ${{D}^{\circ }}$to radian ${{R}^{c}}$ as follows
\[{{R}^{c}}=\dfrac{\pi }{180}\times {{D}^{\circ }}\]
We know that the trigonometric function $\tan x$ takes its input in radians and from the set $\mathsf{\mathbb{R}}-\dfrac{2n+1}{2}\pi $ and returns from the set$\mathsf{\mathbb{R}}$.
We are asked in the question to find the approximate values of $\tan {{46}^{\circ }}$. Let us consider
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\]
We convert the measure to radian and have ;
\[\begin{align}
& {{45}^{\circ }}={{\left( 45\times \dfrac{\pi }{180} \right)}^{c}}=\dfrac{{{\pi }^{c}}}{4} \\
& {{1}^{\circ }}={{\left( 1\times \dfrac{\pi }{180} \right)}^{c}}={{\left( 1\times \dfrac{\dfrac{22}{7}}{180} \right)}^{c}}={{\left( \dfrac{22}{1260} \right)}^{c}}={{0.0176}^{c}} \\
\end{align}\]
Now we can write $\tan {{46}^{\circ }}$ as
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\simeq \tan \left( \dfrac{{{\pi }^{c}}}{4}+{{0.0176}^{c}} \right)\]
We see that $0.0176$ is a very small quantity compared to $\dfrac{\pi }{4}\simeq 0.7854$. So we can use differential approximation for small change $\delta x$ and have;
\[\tan \left( x+\delta x \right)\simeq \tan x+\delta x\dfrac{d}{dx}\left( \tan x \right)\]
We know from standard differential of tangent function is the square of secant that is $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$. So we have;
\[\Rightarrow \tan \left( x+\delta x \right)\simeq \tan x+\delta x{{\sec }^{2}}x\]
We take $x={{\left( \dfrac{\pi }{4} \right)}^{c}}$ and $\delta x\simeq {{0.01746}^{c}}$ in the above step to have to have;
\[\Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq \tan \left( \dfrac{\pi }{4} \right)+0.01746\times {{\sec }^{2}}\left( \dfrac{\pi }{4} \right)\]
We know that value of $\tan \left( \dfrac{\pi }{4} \right),\sec \left( \dfrac{\pi }{4} \right)$ trigonometric table as $\tan \left( \dfrac{\pi }{4} \right)=\tan {{45}^{\circ }}=1$ and $\sec \left( \dfrac{\pi }{4} \right)=\sec {{45}^{\circ }}=\sqrt{2}$ respectively. We put these values in the above step to have
\[\begin{align}
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq 1+0.01746\times {{\left( \sqrt{2} \right)}^{2}} \\
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right) \simeq 1+0.01746\times 2 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1+0.03492 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1.03492 \\
\end{align}\]
Note: We note that the approximation formula comes from Taylor’s series which is given by $f\left( x+h \right)=f\left( x \right)+h{{f}^{'}}\left( x \right)+\dfrac{{{h}^{2}}}{2!}{{f}^{''}}\left( x \right)+\dfrac{{{h}^{3}}}{3!}{{f}^{'''}}\left( x \right)+...$ where $h$ is the very small change in the function $f\left( x \right)$.If we take $y=\tan x$ we can approximate small change in $y$ as $\delta y$ corresponding to small change $\delta x\simeq dx$ in $x$ as $\delta y\simeq dy=\dfrac{d}{dx}\left( y=\tan x \right)\times dx$. We should remember that all trigonometric functions take their arguments in radians not in degree.
Complete step-by-step solution:
We know that from differential calculus that we can approximate the function $f\left( x+\delta x \right)$ as $f\left( x \right)+{{f}^{'}}\left( x \right)\delta x$ where ${{f}^{'}}\left( x \right)$ is the first derivative of the function $f\left( x \right)$ and $\delta x$ is a very small quantity. So we have;
\[f\left( x+\delta x \right)\simeq f\left( x \right)+{{f}^{'}}\left( x \right)\delta x=f\left( x \right)+\delta x\dfrac{d}{dx}f\left( x \right)\]
We know how to convert from given measure degree ${{D}^{\circ }}$to radian ${{R}^{c}}$ as follows
\[{{R}^{c}}=\dfrac{\pi }{180}\times {{D}^{\circ }}\]
We know that the trigonometric function $\tan x$ takes its input in radians and from the set $\mathsf{\mathbb{R}}-\dfrac{2n+1}{2}\pi $ and returns from the set$\mathsf{\mathbb{R}}$.
We are asked in the question to find the approximate values of $\tan {{46}^{\circ }}$. Let us consider
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\]
We convert the measure to radian and have ;
\[\begin{align}
& {{45}^{\circ }}={{\left( 45\times \dfrac{\pi }{180} \right)}^{c}}=\dfrac{{{\pi }^{c}}}{4} \\
& {{1}^{\circ }}={{\left( 1\times \dfrac{\pi }{180} \right)}^{c}}={{\left( 1\times \dfrac{\dfrac{22}{7}}{180} \right)}^{c}}={{\left( \dfrac{22}{1260} \right)}^{c}}={{0.0176}^{c}} \\
\end{align}\]
Now we can write $\tan {{46}^{\circ }}$ as
\[\tan {{46}^{\circ }}=\tan \left( {{45}^{\circ }}+{{1}^{\circ }} \right)\simeq \tan \left( \dfrac{{{\pi }^{c}}}{4}+{{0.0176}^{c}} \right)\]
We see that $0.0176$ is a very small quantity compared to $\dfrac{\pi }{4}\simeq 0.7854$. So we can use differential approximation for small change $\delta x$ and have;
\[\tan \left( x+\delta x \right)\simeq \tan x+\delta x\dfrac{d}{dx}\left( \tan x \right)\]
We know from standard differential of tangent function is the square of secant that is $\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x$. So we have;
\[\Rightarrow \tan \left( x+\delta x \right)\simeq \tan x+\delta x{{\sec }^{2}}x\]
We take $x={{\left( \dfrac{\pi }{4} \right)}^{c}}$ and $\delta x\simeq {{0.01746}^{c}}$ in the above step to have to have;
\[\Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq \tan \left( \dfrac{\pi }{4} \right)+0.01746\times {{\sec }^{2}}\left( \dfrac{\pi }{4} \right)\]
We know that value of $\tan \left( \dfrac{\pi }{4} \right),\sec \left( \dfrac{\pi }{4} \right)$ trigonometric table as $\tan \left( \dfrac{\pi }{4} \right)=\tan {{45}^{\circ }}=1$ and $\sec \left( \dfrac{\pi }{4} \right)=\sec {{45}^{\circ }}=\sqrt{2}$ respectively. We put these values in the above step to have
\[\begin{align}
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right)\simeq 1+0.01746\times {{\left( \sqrt{2} \right)}^{2}} \\
& \Rightarrow \tan \left( \dfrac{\pi }{4}+0.01746 \right) \simeq 1+0.01746\times 2 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1+0.03492 \\
& \Rightarrow \tan \left( {{46}^{\circ }} \right) \simeq 1.03492 \\
\end{align}\]
Note: We note that the approximation formula comes from Taylor’s series which is given by $f\left( x+h \right)=f\left( x \right)+h{{f}^{'}}\left( x \right)+\dfrac{{{h}^{2}}}{2!}{{f}^{''}}\left( x \right)+\dfrac{{{h}^{3}}}{3!}{{f}^{'''}}\left( x \right)+...$ where $h$ is the very small change in the function $f\left( x \right)$.If we take $y=\tan x$ we can approximate small change in $y$ as $\delta y$ corresponding to small change $\delta x\simeq dx$ in $x$ as $\delta y\simeq dy=\dfrac{d}{dx}\left( y=\tan x \right)\times dx$. We should remember that all trigonometric functions take their arguments in radians not in degree.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

